Industry 4.0 is revolutionizing the global manufacturing system. Among the main enabling technologies of this huge phenomenon, Additive Manufacturing represents one of the most promising and exploited, since AM makes processes more flexible, maximize customization, reduce the time to market of new products and minimize production costs for small batches. Particular attention is paid to AM technologies capable of processing metal materials owing to the significant interest of manufacturing market for this kind of materials. However, several gaps to be filled still remain due to their novelties, including production costs that are still too high, especially for the production of large batches. In this context, additive technologies are less competitive than traditional processes, both because of the high cost of machinery and raw materials. Other factors include the slowness of the printing process and the high energy consumption. In the last decade, a new Additive Manufacturing technique arose to overcome the aforementioned drawback intrinsic of the well spread metal AM technologies, especially with regards to the high purchasing cost and energy expenditure, as well as the increased safety during the process. This newly technique, called metal Material Extrusion (ME), basically concerns the advantageous combination of the diffused Material Extrusion equipment, traditionally employed for thermoplastic materials, and metallic fine powders to realise metal finished components. This fabrication is achieved through a raw feedstock made up of metal particles evenly distributed in a polymeric matrix. This innovative multicomponent feedstock is processed by means of a multistage process, which includes the shaping, debinding and sintering phases. Despite the promising outlook, metal Material Extrusion is still in its infancy and, thus, scarcely employed in the manufacturing sectors. The main objective of this thesis concerns the in-depth study of metal Material Extrusion process with the final aim of expanding its knowledge and the possibilities of its application, in order to make it more usable in the industrial field. This research has focused on two stainless steels of great interest for different manufacturing applications and therefore widely used: AISI 316L and AISI 630. The main physical and mechanical properties of the components resulting from the multistep process were analysed and compared to those of the relative conventional monolithic material in order to give a reference of the potential and countersinks of the technology. The environmental issue developed in recent years also required an assessment of the sustainability of this technology, especially with regard to the recycling and reuse of production waste. In this perspective, a circular AM method was developed for the reuse of the defected parts collected from the first stage of the process to enhance the economic and sustainable competitiveness of metal Material Extrusion technology.
L'industria 4.0 sta rivoluzionando il sistema manifatturiero globale. Tra le principali tecnologie abilitanti di questo fenomeno rilevante, l'Additive Manufacturing rappresenta una delle più promettenti e sfruttate, poiché rende i processi più flessibili, massimizza la customizzazione, riduce il time to market di nuovi prodotti e minimizza i costi di produzione per piccoli lotti. Particolare attenzione è riservata alle tecnologie AM in grado di lavorare metalli per via del notevole interesse del mercato manifatturiero per questo tipo di materiali. Rimangono però ancora diverse lacune da colmare, tra cui i costi di produzione ancora troppo elevati, soprattutto per la produzione di grandi lotti. In questo contesto, le tecnologie additive sono meno competitive rispetto ai processi tradizionali, sia per l'alto costo dei macchinari che delle materie prime. Altri fattori includono la lentezza del processo di stampa e l'elevato consumo di energia. Nell'ultimo decennio è emersa una nuova tecnica di Additive Manufacturing per ovviare al già citato inconveniente intrinseco delle tecnologie additive metalliche, soprattutto per quanto riguarda gli elevati costi di acquisto e dispendio energetico, nonché la maggiore sicurezza durante il processo. Questa nuova tecnica, denominata Metal Material Extusion (ME), riguarda sostanzialmente la vantaggiosa combinazione delle tradizionali apparecchiature di Material Extrusion, tradizionalmente impiegate per i materiali termoplastici, e polveri metalliche fini per realizzare componenti finiti in metallo. Questa fabbricazione è ottenuta attraverso una materia prima composta da particelle metalliche distribuite uniformemente in una matrice polimerica. Il materiale di partenza multicomponente viene processato mediante una tecnica multistadio, che comprende le fasi di deposizione, deceraggio e sinterizzazione. Nonostante le prospettive promettenti, l'estrusione di materiali metallici è ancora agli inizi e, quindi, scarsamente impiegata nei settori manifatturieri. L'obiettivo principale di questa tesi riguarda lo studio approfondito del processo di estrusione di materiale metallico con l'obiettivo finale di ampliarne le conoscenze e le possibilità della sua applicazione, al fine di renderlo maggiormente utilizzabile in ambito industriale. Questa ricerca si è concentrata su due acciai inossidabili di grande interesse per diverse applicazioni produttive e quindi ampiamente utilizzati: AISI 316L e AISI 630. Le principali proprietà fisiche e meccaniche dei componenti risultanti dal processo multistep sono state analizzate e confrontate con quelle dei relativi convenzionali materiale monolitico per dare un riferimento delle potenzialità e delle svasature della tecnologia. La questione ambientale sviluppata negli ultimi anni ha richiesto anche una valutazione della sostenibilità di questa tecnologia, soprattutto per quanto riguarda il riciclo e il riutilizzo degli scarti di produzione. In questa prospettiva, è stato sviluppato un metodo circolare AM per il riutilizzo delle parti difettose raccolte dalla prima fase del processo per migliorare la competitività economica e sostenibile della tecnologia metal Material Extrusion.
(2023). Studio meccanico e fisico su leghe di acciaio inossidabile fabbricate mediante metal Material Extrusion . Retrieved from https://hdl.handle.net/10446/239651 Retrieved from http://dx.doi.org/10.13122/carminati-mattia_phd2023-02-24
Studio meccanico e fisico su leghe di acciaio inossidabile fabbricate mediante metal Material Extrusion
CARMINATI, Mattia
2023-02-24
Abstract
Industry 4.0 is revolutionizing the global manufacturing system. Among the main enabling technologies of this huge phenomenon, Additive Manufacturing represents one of the most promising and exploited, since AM makes processes more flexible, maximize customization, reduce the time to market of new products and minimize production costs for small batches. Particular attention is paid to AM technologies capable of processing metal materials owing to the significant interest of manufacturing market for this kind of materials. However, several gaps to be filled still remain due to their novelties, including production costs that are still too high, especially for the production of large batches. In this context, additive technologies are less competitive than traditional processes, both because of the high cost of machinery and raw materials. Other factors include the slowness of the printing process and the high energy consumption. In the last decade, a new Additive Manufacturing technique arose to overcome the aforementioned drawback intrinsic of the well spread metal AM technologies, especially with regards to the high purchasing cost and energy expenditure, as well as the increased safety during the process. This newly technique, called metal Material Extrusion (ME), basically concerns the advantageous combination of the diffused Material Extrusion equipment, traditionally employed for thermoplastic materials, and metallic fine powders to realise metal finished components. This fabrication is achieved through a raw feedstock made up of metal particles evenly distributed in a polymeric matrix. This innovative multicomponent feedstock is processed by means of a multistage process, which includes the shaping, debinding and sintering phases. Despite the promising outlook, metal Material Extrusion is still in its infancy and, thus, scarcely employed in the manufacturing sectors. The main objective of this thesis concerns the in-depth study of metal Material Extrusion process with the final aim of expanding its knowledge and the possibilities of its application, in order to make it more usable in the industrial field. This research has focused on two stainless steels of great interest for different manufacturing applications and therefore widely used: AISI 316L and AISI 630. The main physical and mechanical properties of the components resulting from the multistep process were analysed and compared to those of the relative conventional monolithic material in order to give a reference of the potential and countersinks of the technology. The environmental issue developed in recent years also required an assessment of the sustainability of this technology, especially with regard to the recycling and reuse of production waste. In this perspective, a circular AM method was developed for the reuse of the defected parts collected from the first stage of the process to enhance the economic and sustainable competitiveness of metal Material Extrusion technology.File | Dimensione del file | Formato | |
---|---|---|---|
00_Ph.pdf
accesso aperto
Descrizione: Tesi
Versione:
Tesi di dottorato
Dimensione del file
10.43 MB
Formato
Adobe PDF
|
10.43 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo