The paper presents innovative approaches to structural health monitoring techniques making extensive use of tools such as Finite Element Model Update and Artificial Intelligence. The goal is to develop a frameowrk capable of establishing the health status for a structure in an effective and robust manner spienging eventually to the probabilistic determination of its remaining life. In the course of the work, software for dynamic modal identification and analysis of environmental and seismic signals was also developed.
Il lavoro presenta approcci innovativi alle tecniche di monitoraggio dello stato di salute strutturale facendo ampio uso di strumenti quali Finite Element Model Update e Intelligenza Artificiale. L'obbiettivo è sviluppare un framework in grado di stabilire lo stato di salute strutturale in modo efficace e robusto spingendosi infine alla determinazione probabilistica della sua vita residua. Nel corso del lavoro è stato inoltre sviluppato un software per l'identificazione dinamica modale e l'analisi di segnali ambientali e sismici.
(2023). Structural Health Monitoring: approcci innovativi tramite tecniche ibride di supervised Machine Learning . Retrieved from https://hdl.handle.net/10446/240332 Retrieved from http://dx.doi.org/10.13122/castelli-simone_phd2023-03-03
Structural Health Monitoring: approcci innovativi tramite tecniche ibride di supervised Machine Learning
CASTELLI, Simone
2023-03-03
Abstract
The paper presents innovative approaches to structural health monitoring techniques making extensive use of tools such as Finite Element Model Update and Artificial Intelligence. The goal is to develop a frameowrk capable of establishing the health status for a structure in an effective and robust manner spienging eventually to the probabilistic determination of its remaining life. In the course of the work, software for dynamic modal identification and analysis of environmental and seismic signals was also developed.File | Dimensione del file | Formato | |
---|---|---|---|
00_TesiPhD_SC_final.pdf
accesso aperto
Descrizione: Tesi rivista
Versione:
Tesi di dottorato
Dimensione del file
46.23 MB
Formato
Adobe PDF
|
46.23 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo