We present a parameter estimation method, based on particle swarm optimization (PSO) and embedding the tau-leaping algorithm, for the efficient estimation of reaction constants in stochastic models of biological systems, using as target a set of discrete-time measurements of molecular amounts sampled in different experimental conditions. To account for the multiplicity of data, we consider a multi-swarm formulation of PSO. The whole method is developed for GPGPU architecture to reduce the computational costs.

(2012). Estimating reaction constants in stochastic biological systems with a multi-swarm PSO running on GPUs [poster communication - poster]. Retrieved from http://hdl.handle.net/10446/28347

Estimating reaction constants in stochastic biological systems with a multi-swarm PSO running on GPUs

CAZZANIGA, Paolo;
2012-01-01

Abstract

We present a parameter estimation method, based on particle swarm optimization (PSO) and embedding the tau-leaping algorithm, for the efficient estimation of reaction constants in stochastic models of biological systems, using as target a set of discrete-time measurements of molecular amounts sampled in different experimental conditions. To account for the multiplicity of data, we consider a multi-swarm formulation of PSO. The whole method is developed for GPGPU architecture to reduce the computational costs.
2012
Nobile, Marco S.; Besozzi, Daniela; Cazzaniga, Paolo; Mauri, Giancarlo; Pescini, Dario
File allegato/i alla scheda:
File Dimensione del file Formato  
p1421-nobile.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 348.06 kB
Formato Adobe PDF
348.06 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/28347
Citazioni
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact