Uncertainty evaluation for spatial prediction of curves remains an open issue in the functional data literature. We consider three different approaches that rely on semi-parametric bootstrapping, principal component analysis and classical inference for additive models respectively.
(2014). Kriging uncertainty for functional data: a comparison study [conference presentation - intervento a convegno]. Retrieved from http://hdl.handle.net/10446/31709
Kriging uncertainty for functional data: a comparison study
2014-01-01
Abstract
Uncertainty evaluation for spatial prediction of curves remains an open issue in the functional data literature. We consider three different approaches that rely on semi-parametric bootstrapping, principal component analysis and classical inference for additive models respectively.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
3213-6575-1-PB.pdf
accesso aperto
Descrizione: publisher's version - versione dell'editore
Dimensione del file
130.07 kB
Formato
Adobe PDF
|
130.07 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo