Uncertainty evaluation for spatial prediction of curves remains an open issue in the functional data literature. We consider three different approaches that rely on semi-parametric bootstrapping, principal component analysis and classical inference for additive models respectively.

(2014). Kriging uncertainty for functional data: a comparison study [conference presentation - intervento a convegno]. Retrieved from http://hdl.handle.net/10446/31709

Kriging uncertainty for functional data: a comparison study

2014-01-01

Abstract

Uncertainty evaluation for spatial prediction of curves remains an open issue in the functional data literature. We consider three different approaches that rely on semi-parametric bootstrapping, principal component analysis and classical inference for additive models respectively.
2014
FRANCO VILLORIA, M.; Ignaccolo, R.
File allegato/i alla scheda:
File Dimensione del file Formato  
3213-6575-1-PB.pdf

accesso aperto

Descrizione: publisher's version - versione dell'editore
Dimensione del file 130.07 kB
Formato Adobe PDF
130.07 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/31709
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact