We consider the problem of the estimation of the invariant distribution function of an ergodic diffusion process when the drift coefficient is unknown. The empirical distribution function is a natural estimator which is unbiased, uniformly consistent and efficient in different metrics. Here we study the properties of optimality for another kind of estimator recently proposed. We consider a class of unbiased estimators and we show that they are also efficient in the sense that their asymptotic risk, defined as the integrated mean square error, attains the same asymptotic minimax lower bound of the empirical distribution function.
Efficiency of a class of unbiased estimators for the invariant distribution function of a diffusion process
NEGRI, Ilia
2008-01-01
Abstract
We consider the problem of the estimation of the invariant distribution function of an ergodic diffusion process when the drift coefficient is unknown. The empirical distribution function is a natural estimator which is unbiased, uniformly consistent and efficient in different metrics. Here we study the properties of optimality for another kind of estimator recently proposed. We consider a class of unbiased estimators and we show that they are also efficient in the sense that their asymptotic risk, defined as the integrated mean square error, attains the same asymptotic minimax lower bound of the empirical distribution function.File | Dimensione del file | Formato | |
---|---|---|---|
wpDIIMM_n.8MS-2008.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
260 kB
Formato
Adobe PDF
|
260 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo