This paper is devoted to the grazing collision limit of the inelastic Kac model introduced in [PT04], when the equilibrium distribution function is a heavy-tailed Lévy-type distribution with in nite variance. We prove that solutions in an appropriate domain of attraction of the equilibrium distribution converge to solutions of a Fokker-Planck equation with a fractional diffusion operator.
The grazing collision limit of the inelastic Kac model around a Lévy-type equilibrium
FURIOLI, Giulia Maria Dalia;
2011-01-01
Abstract
This paper is devoted to the grazing collision limit of the inelastic Kac model introduced in [PT04], when the equilibrium distribution function is a heavy-tailed Lévy-type distribution with in nite variance. We prove that solutions in an appropriate domain of attraction of the equilibrium distribution converge to solutions of a Fokker-Planck equation with a fractional diffusion operator.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
ms5_2011.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
518.88 kB
Formato
Adobe PDF
|
518.88 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo