To cope with Internet video explosion, recent work proposes to deploy caches to absorb part of the traffic related to popular videos. Nonetheless, caching literature has mainly focused on network-centric metrics, while the quality of users' video streaming experience should be the key performance index to optimize. Additionally, the general assumption is that each user request can be satisfied by a single object, which does not hold when multiple representations at different quality levels are available for the same video.Our contribution in this paper is to extend the classic object placement problem (which object to cache and where) by further considering the representation selection problem (i.e., which quality representation to cache), employing two methodologies to tackle this challenge. First, we employ a Mixed Integer Linear Programming (MILP) formulation to obtain the centralized optimal solution, as well as bounds to natural policies that are readily obtained as additional constraints of the MILP. Second, from the structure of the optimal solution, we learn guidelines that assist the design of distributed caching strategies: namely, we devise a simple yet effective distributed strategy that incrementally improves the quality of cached objects. Via simulation over large scale scenarios comprising up to hundred nodes and hundred million objects, we show our proposal to be effective in balancing user perceived utility vs bandwidth usage.

(2016). Representation Selection Problem: Optimizing Video Delivery through Caching . Retrieved from http://hdl.handle.net/10446/106062

Representation Selection Problem: Optimizing Video Delivery through Caching

Martignon, Fabio;
2016-01-01

Abstract

To cope with Internet video explosion, recent work proposes to deploy caches to absorb part of the traffic related to popular videos. Nonetheless, caching literature has mainly focused on network-centric metrics, while the quality of users' video streaming experience should be the key performance index to optimize. Additionally, the general assumption is that each user request can be satisfied by a single object, which does not hold when multiple representations at different quality levels are available for the same video.Our contribution in this paper is to extend the classic object placement problem (which object to cache and where) by further considering the representation selection problem (i.e., which quality representation to cache), employing two methodologies to tackle this challenge. First, we employ a Mixed Integer Linear Programming (MILP) formulation to obtain the centralized optimal solution, as well as bounds to natural policies that are readily obtained as additional constraints of the MILP. Second, from the structure of the optimal solution, we learn guidelines that assist the design of distributed caching strategies: namely, we devise a simple yet effective distributed strategy that incrementally improves the quality of cached objects. Via simulation over large scale scenarios comprising up to hundred nodes and hundred million objects, we show our proposal to be effective in balancing user perceived utility vs bandwidth usage.
2016
Araldo, Andrea; Martignon, Fabio; Rossi, Dario
File allegato/i alla scheda:
File Dimensione del file Formato  
Paper_Networking2016.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 903.04 kB
Formato Adobe PDF
903.04 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/106062
Citazioni
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact