With the purpose of delivering more robust systems, this paper revisits the problem of Inverse Uncertainty Quantification that is related to the discrepancy between the measured data at runtime (while the system executes) and the formal specification (i.e., a mathematical model) of the system under consideration, and the value calibration of unknown parameters in the model. We foster an approach to quantify and mitigate system uncertainty during the development cycle by combining Bayesian reasoning and online Model-based testing.

(2017). Towards inverse uncertainty quantification in software development . Retrieved from http://hdl.handle.net/10446/116149

Towards inverse uncertainty quantification in software development

Camilli, Matteo;Gargantini, Angelo;Scandurra, Patrizia;
2017-01-01

Abstract

With the purpose of delivering more robust systems, this paper revisits the problem of Inverse Uncertainty Quantification that is related to the discrepancy between the measured data at runtime (while the system executes) and the formal specification (i.e., a mathematical model) of the system under consideration, and the value calibration of unknown parameters in the model. We foster an approach to quantify and mitigate system uncertainty during the development cycle by combining Bayesian reasoning and online Model-based testing.
2017
Camilli, Matteo; Gargantini, Angelo Michele; Scandurra, Patrizia; Bellettini, Carlo
File allegato/i alla scheda:
File Dimensione del file Formato  
978-3-319-66197-1_24.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 298.74 kB
Formato Adobe PDF
298.74 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/116149
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact