With the purpose of delivering more robust systems, this paper revisits the problem of Inverse Uncertainty Quantification that is related to the discrepancy between the measured data at runtime (while the system executes) and the formal specification (i.e., a mathematical model) of the system under consideration, and the value calibration of unknown parameters in the model. We foster an approach to quantify and mitigate system uncertainty during the development cycle by combining Bayesian reasoning and online Model-based testing.

(2017). Towards inverse uncertainty quantification in software development . Retrieved from http://hdl.handle.net/10446/116149

Towards inverse uncertainty quantification in software development

Camilli, Matteo;Gargantini, Angelo;Scandurra, Patrizia;
2017-01-01

Abstract

With the purpose of delivering more robust systems, this paper revisits the problem of Inverse Uncertainty Quantification that is related to the discrepancy between the measured data at runtime (while the system executes) and the formal specification (i.e., a mathematical model) of the system under consideration, and the value calibration of unknown parameters in the model. We foster an approach to quantify and mitigate system uncertainty during the development cycle by combining Bayesian reasoning and online Model-based testing.
2017
Inglese
Software Engineering and Formal Methods. 15th International Conference, SEFM 2017, Trento, Italy, September 4–8, 2017, Proceedings
Alessandro CimattiMarjan Sirjani
9783319661964
10469
375
381
Springer
SEFM 2017: 15th IEEE International Conference on Software Engineering and Formal Methods, Trento, Italy, 4–8 September 2017
15th
Trento (Italy)
4–8 September 2017
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
Theoretical Computer Science; Computer Science
info:eu-repo/semantics/conferenceObject
4
Camilli, Matteo; Gargantini, Angelo Michele; Scandurra, Patrizia; Bellettini, Carlo
1.4 Contributi in atti di convegno - Contributions in conference proceedings::1.4.01 Contributi in atti di convegno - Conference presentations
reserved
Non definito
273
(2017). Towards inverse uncertainty quantification in software development . Retrieved from http://hdl.handle.net/10446/116149
File allegato/i alla scheda:
File Dimensione del file Formato  
978-3-319-66197-1_24.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 298.74 kB
Formato Adobe PDF
298.74 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/116149
Citazioni
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact