Ring Rolling is an advanced local incremental forming technology to fabricate directly precise seamless ring-shape parts with various dimensions and materials. To produce a high-quality ring different speed laws should be defined: the speed laws of the Idle and Axial rolls must be set to control the ring cross section and the Driver roll angular velocity must be chosen to avoid too high localized deformation on the ring cross section. Usually, in industrial environment, a constant rotation is set for the Driver roll, but this approach does not guarantee a constant ring angular velocity because of its diameter expansion. In particular, the higher is the ring diameter the lower is its angular velocity. The main risk due to this constrain is the generation of a non-uniform ring geometry. An innovative approach is to design a Driver Roll speed law to obtain a constant ring angular velocity. In this paper a FEM approach was followed to investigate the Driver roll speed influence on the Ring Rolling process. Different Driver roll speed laws were tested starting from a model defined in an industrial plant. Results will be analyzed by a geometrical and physical point of view.

(2017). Driver roll speed influence in Ring Rolling process . In PROCEDIA ENGINEERING. Retrieved from http://hdl.handle.net/10446/116414

Driver roll speed influence in Ring Rolling process

Ceretti, E.;Giardini, C.
2017-01-01

Abstract

Ring Rolling is an advanced local incremental forming technology to fabricate directly precise seamless ring-shape parts with various dimensions and materials. To produce a high-quality ring different speed laws should be defined: the speed laws of the Idle and Axial rolls must be set to control the ring cross section and the Driver roll angular velocity must be chosen to avoid too high localized deformation on the ring cross section. Usually, in industrial environment, a constant rotation is set for the Driver roll, but this approach does not guarantee a constant ring angular velocity because of its diameter expansion. In particular, the higher is the ring diameter the lower is its angular velocity. The main risk due to this constrain is the generation of a non-uniform ring geometry. An innovative approach is to design a Driver Roll speed law to obtain a constant ring angular velocity. In this paper a FEM approach was followed to investigate the Driver roll speed influence on the Ring Rolling process. Different Driver roll speed laws were tested starting from a model defined in an industrial plant. Results will be analyzed by a geometrical and physical point of view.
2017
Allegri, G.; Giorleo, L.; Ceretti, Elisabetta; Giardini, Claudio
File allegato/i alla scheda:
File Dimensione del file Formato  
1-s2.0-S1877705817356527-main.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 678 kB
Formato Adobe PDF
678 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/116414
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact