Inspired by a recent approach for genome reconstruction from incomplete data, we consider a variant of the longest common subsequence problem for the comparison of two sequences, one of which is incomplete, i.e. it has some missing elements. The new combinatorial problem, called Longest Filled Common Subsequence, given two sequences A and B, and a multiset M of symbols missing in B, asks for a sequence B* obtained by inserting the symbols of M into B so that B* induces a common subsequence with A of maximum length. First, we investigate the computational and approximation complexity of the problem and we show that it is NP-hard and APX-hard when A contains at most two occurrences of each symbol. Then, we give a 3/5-approximation algorithm for the problem. Finally, we present a fixed-parameter algorithm, when the problem is parameterized by the number of symbols inserted in B that "match" symbols of A.

(2017). The longest filled common subsequence problem . Retrieved from http://hdl.handle.net/10446/118352

The longest filled common subsequence problem

Dondi, Riccardo;
2017-01-01

Abstract

Inspired by a recent approach for genome reconstruction from incomplete data, we consider a variant of the longest common subsequence problem for the comparison of two sequences, one of which is incomplete, i.e. it has some missing elements. The new combinatorial problem, called Longest Filled Common Subsequence, given two sequences A and B, and a multiset M of symbols missing in B, asks for a sequence B* obtained by inserting the symbols of M into B so that B* induces a common subsequence with A of maximum length. First, we investigate the computational and approximation complexity of the problem and we show that it is NP-hard and APX-hard when A contains at most two occurrences of each symbol. Then, we give a 3/5-approximation algorithm for the problem. Finally, we present a fixed-parameter algorithm, when the problem is parameterized by the number of symbols inserted in B that "match" symbols of A.
2017
Castelli, Mauro; Dondi, Riccardo; Mauri, Giancarlo; Zoppis, Italo
File allegato/i alla scheda:
File Dimensione del file Formato  
CPM2017.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 566.21 kB
Formato Adobe PDF
566.21 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/118352
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact