Finding cohesive subgraphs in a network is a well-known problem in graph theory. Several alternative formulations of cohesive subgraph have been proposed, a notable example being s-club, which is a subgraph where each vertex is at distance at most s to the others. Here we consider the problem of covering a given graph with the minimum number of s-clubs. We study the computational and approximation complexity of this problem, when s is equal to 2 or 3. First, we show that deciding if there exists a cover of a graph with three 2-clubs is NP-complete, and that deciding if there exists a cover of a graph with two 3-clubs is NP-complete. Then, we consider the approximation complexity of covering a graph with the minimum number of 2-clubs and 3-clubs. We show that, given a graph G = (V,E) to be covered, covering G with the minimum number of 2-clubs is not approximable within factor (Formula Presented), for any ε>0, and covering G with the minimum number of 3-clubs is not approximable within factor O(|V|1-ε, for any ε>0. On the positive side, we give an approximation algorithm of factor 2|V|1/2log3/2|V| for covering a graph with the minimum number of 2-clubs.
(2018). Covering with clubs: Complexity and approximability . Retrieved from http://hdl.handle.net/10446/132420
Covering with clubs: Complexity and approximability
Dondi, Riccardo;
2018-01-01
Abstract
Finding cohesive subgraphs in a network is a well-known problem in graph theory. Several alternative formulations of cohesive subgraph have been proposed, a notable example being s-club, which is a subgraph where each vertex is at distance at most s to the others. Here we consider the problem of covering a given graph with the minimum number of s-clubs. We study the computational and approximation complexity of this problem, when s is equal to 2 or 3. First, we show that deciding if there exists a cover of a graph with three 2-clubs is NP-complete, and that deciding if there exists a cover of a graph with two 3-clubs is NP-complete. Then, we consider the approximation complexity of covering a graph with the minimum number of 2-clubs and 3-clubs. We show that, given a graph G = (V,E) to be covered, covering G with the minimum number of 2-clubs is not approximable within factor (Formula Presented), for any ε>0, and covering G with the minimum number of 3-clubs is not approximable within factor O(|V|1-ε, for any ε>0. On the positive side, we give an approximation algorithm of factor 2|V|1/2log3/2|V| for covering a graph with the minimum number of 2-clubs.File | Dimensione del file | Formato | |
---|---|---|---|
iwoca2018.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
370.81 kB
Formato
Adobe PDF
|
370.81 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo