In recent years, there has been a strong interest in indirect measures of nonresponse bias in surveys or other forms of data collection. This interest originates from gradually decreasing propensities to respond to surveys parallel to pressures on survey budgets. These developments led to a growing focus on the representativeness or balance of the responding sample units with respect to relevant auxiliary variables. One example of a measure is the representativeness indicator, or R-indicator. The R-indicator is based on the design-weighted sample variation of estimated response propensities. It pre-supposes linked auxiliary data. One of the criticisms of the indicator is that it cannot be used in settings where auxiliary information is available only at the population level. In this paper, we propose a new method for estimating response propensities that does not need auxiliary information for non-respondents to the survey and is based on population auxiliary information. These population-based response propensities can then be used to develop R-indicators that employ population contingency tables or population frequency counts. We discuss the statistical properties of the indicators, and evaluate their performance using an evaluation study based on real census data and an application from the Dutch Health Survey.

(2019). Estimation of response propensities and indicators of representative response using population-level information : Estimation des propensions à répondre et indicateurs de représentativité des réponses utilisant l’information au niveau de la population [journal article - articolo]. In SURVEY METHODOLOGY. Retrieved from http://hdl.handle.net/10446/142558

Estimation of response propensities and indicators of representative response using population-level information : Estimation des propensions à répondre et indicateurs de représentativité des réponses utilisant l’information au niveau de la population

Bianchi, Annamaria;
2019-01-01

Abstract

In recent years, there has been a strong interest in indirect measures of nonresponse bias in surveys or other forms of data collection. This interest originates from gradually decreasing propensities to respond to surveys parallel to pressures on survey budgets. These developments led to a growing focus on the representativeness or balance of the responding sample units with respect to relevant auxiliary variables. One example of a measure is the representativeness indicator, or R-indicator. The R-indicator is based on the design-weighted sample variation of estimated response propensities. It pre-supposes linked auxiliary data. One of the criticisms of the indicator is that it cannot be used in settings where auxiliary information is available only at the population level. In this paper, we propose a new method for estimating response propensities that does not need auxiliary information for non-respondents to the survey and is based on population auxiliary information. These population-based response propensities can then be used to develop R-indicators that employ population contingency tables or population frequency counts. We discuss the statistical properties of the indicators, and evaluate their performance using an evaluation study based on real census data and an application from the Dutch Health Survey.
articolo
2019
Ces dernières années, les mesures indirectes du biais de non-réponse dans les enquêtes ou d’autres formes de collecte de données ont suscité un vif intérêt, en raison de la diminution progressive des propensions à répondre aux enquêtes et des pressions exercées sur les budgets d’enquête. Ces changements ont poussé les sondeurs à se concentrer davantage sur la représentativité ou l’équilibre des unités échantillonnées répondantes par rapport à des variables auxiliaires pertinentes. Un exemple de mesure est l’indicateur de représentativité, ou indicateur R. Cet indicateur est basé sur la variation d’échantillon pondérée selon le plan de sondage des propensions à répondre estimées. Cela suppose que l’on dispose de données auxiliaires appariées. L’une des critiques de l’indicateur est qu’il ne peut pas être utilisé si l’information auxiliaire est disponible uniquement au niveau de la population. Dans le présent article, nous proposons une nouvelle méthode d’estimation des propensions à répondre qui ne requiert pas d’information auxiliaire pour les non-répondants à l’enquête et qui est fondée sur de l’information auxiliaire pour la population. Ces propensions à répondre basées sur la population peuvent alors être utilisées pour élaborer des indicateurs R faisant appel à des tableaux de contingence de population ou à des fréquences de population. Nous discutons des propriétés statistiques des indicateurs, et évaluons leur performance au moyen d’une étude portant sur des données réelles de recensement et d’une application à la Dutch Health Survey.
Bianchi, Annamaria; Shlomo, Natalie; Schouten, Barry; Da Silva, Damiao N.; Skinner, Chris
(2019). Estimation of response propensities and indicators of representative response using population-level information : Estimation des propensions à répondre et indicateurs de représentativité des réponses utilisant l’information au niveau de la population [journal article - articolo]. In SURVEY METHODOLOGY. Retrieved from http://hdl.handle.net/10446/142558
File allegato/i alla scheda:
File Dimensione del file Formato  
Bianchi, Shlomo, Schouten, Da Silva & Skinner (2019, SMJ).pdf

accesso aperto

Descrizione: Versione in inglese
Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 640.8 kB
Formato Adobe PDF
640.8 kB Adobe PDF Visualizza/Apri
Bianchi, Shlomo, Schouten, Da Silva & Skinner (2019, SMJ)_fra.pdf

accesso aperto

Descrizione: Versione in francese
Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 636.5 kB
Formato Adobe PDF
636.5 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/142558
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact