Background and Objectives: Image segmentation represents one of the most challenging issues in medical image analysis to distinguish among different adjacent tissues in a body part. In this context, appropriate image pre-processing tools can improve the result accuracy achieved by computer-assisted segmentation methods. Taking into consideration images with a bimodal intensity distribution, image binarization can be used to classify the input pictorial data into two classes, given a threshold intensity value. Unfortunately, adaptive thresholding techniques for two-class segmentation work properly only for images characterized by bimodal histograms. We aim at overcoming these limitations and automatically determining a suitable optimal threshold for bimodal Magnetic Resonance (MR) images, by designing an intelligent image analysis framework tailored to effectively assist the physicians during their decision-making tasks. Methods: In this work, we present a novel evolutionary framework for image enhancement, automatic global thresholding, and segmentation, which is here applied to different clinical scenarios involving bimodal MR image analysis: (i) uterine fibroid segmentation in MR guided Focused Ultrasound Surgery, and (ii) brain metastatic cancer segmentation in neuro-radiosurgery therapy. Our framework exploits MedGA as a pre-processing stage. MedGA is an image enhancement method based on Genetic Algorithms that improves the threshold selection, obtained by the efficient Iterative Optimal Threshold Selection algorithm, between the underlying sub-distributions in a nearly bimodal histogram. Results: The results achieved by the proposed evolutionary framework were quantitatively evaluated, showing that the use of MedGA as a pre-processing stage outperforms the conventional image enhancement methods (i.e., histogram equalization, bi-histogram equalization, Gamma transformation, and sigmoid transformation), in terms of both MR image enhancement and segmentation evaluation metrics. Conclusions: Thanks to this framework, MR image segmentation accuracy is considerably increased, allowing for measurement repeatability in clinical workflows. The proposed computational solution could be well-suited for other clinical contexts requiring MR image analysis and segmentation, aiming at providing useful insights for differential diagnosis and prognosis.

(2019). A novel framework for MR image segmentation and quantification by using MedGA [journal article - articolo]. In COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE. Retrieved from http://hdl.handle.net/10446/144674

A novel framework for MR image segmentation and quantification by using MedGA

Tangherloni, Andrea;Cazzaniga, Paolo;
2019-01-01

Abstract

Background and Objectives: Image segmentation represents one of the most challenging issues in medical image analysis to distinguish among different adjacent tissues in a body part. In this context, appropriate image pre-processing tools can improve the result accuracy achieved by computer-assisted segmentation methods. Taking into consideration images with a bimodal intensity distribution, image binarization can be used to classify the input pictorial data into two classes, given a threshold intensity value. Unfortunately, adaptive thresholding techniques for two-class segmentation work properly only for images characterized by bimodal histograms. We aim at overcoming these limitations and automatically determining a suitable optimal threshold for bimodal Magnetic Resonance (MR) images, by designing an intelligent image analysis framework tailored to effectively assist the physicians during their decision-making tasks. Methods: In this work, we present a novel evolutionary framework for image enhancement, automatic global thresholding, and segmentation, which is here applied to different clinical scenarios involving bimodal MR image analysis: (i) uterine fibroid segmentation in MR guided Focused Ultrasound Surgery, and (ii) brain metastatic cancer segmentation in neuro-radiosurgery therapy. Our framework exploits MedGA as a pre-processing stage. MedGA is an image enhancement method based on Genetic Algorithms that improves the threshold selection, obtained by the efficient Iterative Optimal Threshold Selection algorithm, between the underlying sub-distributions in a nearly bimodal histogram. Results: The results achieved by the proposed evolutionary framework were quantitatively evaluated, showing that the use of MedGA as a pre-processing stage outperforms the conventional image enhancement methods (i.e., histogram equalization, bi-histogram equalization, Gamma transformation, and sigmoid transformation), in terms of both MR image enhancement and segmentation evaluation metrics. Conclusions: Thanks to this framework, MR image segmentation accuracy is considerably increased, allowing for measurement repeatability in clinical workflows. The proposed computational solution could be well-suited for other clinical contexts requiring MR image analysis and segmentation, aiming at providing useful insights for differential diagnosis and prognosis.
articolo
2019
Rundo, Leonardo; Tangherloni, Andrea; Cazzaniga, Paolo; Nobile, Marco S.; Russo, Giorgio; Gilardi, Maria Carla; Vitabile, Salvatore; Mauri, Giancarlo; Besozzi, Daniela; Militello, Carmelo
(2019). A novel framework for MR image segmentation and quantification by using MedGA [journal article - articolo]. In COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE. Retrieved from http://hdl.handle.net/10446/144674
File allegato/i alla scheda:
File Dimensione del file Formato  
1-s2.0-S0169260718317565-main.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/144674
Citazioni
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 39
social impact