We study the rate of convergence to equilibrium of the solution of a Fokker–Planck type equation introduced in [G. Toscani, Kinetic models of opinion formation Commun. Math. Sci., 4 (3) (2006)] to describe opinion formation in a multi-agent system. The main feature of this Fokker–Planck equation is the presence of a variable diffusion coefficient and boundaries, which introduce new challenging mathematical problems in the study of its long-time behavior.

(2019). Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities [journal article - articolo]. In ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. Retrieved from http://hdl.handle.net/10446/144799

Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities

Furioli, Giulia;
2019-08-30

Abstract

We study the rate of convergence to equilibrium of the solution of a Fokker–Planck type equation introduced in [G. Toscani, Kinetic models of opinion formation Commun. Math. Sci., 4 (3) (2006)] to describe opinion formation in a multi-agent system. The main feature of this Fokker–Planck equation is the presence of a variable diffusion coefficient and boundaries, which introduce new challenging mathematical problems in the study of its long-time behavior.
articolo
30-ago-2019
Furioli, Giulia Maria Dalia; Pulvirenti, Ada; Terraneo, Elide; Toscani, Giuseppe
(2019). Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities [journal article - articolo]. In ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. Retrieved from http://hdl.handle.net/10446/144799
File allegato/i alla scheda:
File Dimensione del file Formato  
Revised-op.pdf

Open Access dal 02/09/2021

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Creative commons
Dimensione del file 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF Visualizza/Apri
1-s2.0-S0294144919300794-main.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/144799
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact