We study the rate of convergence to equilibrium of the solution of a Fokker–Planck type equation introduced in [G. Toscani, Kinetic models of opinion formation Commun. Math. Sci., 4 (3) (2006)] to describe opinion formation in a multi-agent system. The main feature of this Fokker–Planck equation is the presence of a variable diffusion coefficient and boundaries, which introduce new challenging mathematical problems in the study of its long-time behavior.
(2019). Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities [journal article - articolo]. In ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. Retrieved from http://hdl.handle.net/10446/144799
Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities
Furioli, Giulia;
2019-08-30
Abstract
We study the rate of convergence to equilibrium of the solution of a Fokker–Planck type equation introduced in [G. Toscani, Kinetic models of opinion formation Commun. Math. Sci., 4 (3) (2006)] to describe opinion formation in a multi-agent system. The main feature of this Fokker–Planck equation is the presence of a variable diffusion coefficient and boundaries, which introduce new challenging mathematical problems in the study of its long-time behavior.File | Dimensione del file | Formato | |
---|---|---|---|
Revised-op.pdf
Open Access dal 02/09/2021
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Creative commons
Dimensione del file
2.5 MB
Formato
Adobe PDF
|
2.5 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0294144919300794-main.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo