Support Vector Machines (SVMs) and Kernel methods have found a natural and effective coexistence since their introduction in the early 90s. In this article, we will describe the main concepts that motivate the importance of this relationship. In fact SVMs use kernels for learning linear predictors in high dimensional feature spaces. First, we will describe intuitively how this mechanism is realized, introducing the main concepts and definitions, i.e., maximum margin hyperplane, kernels and non-linearly separable problems. Then the main mathematical issues for linear and nonlinear SVM-based classification will be detailed. We will also introduce some important extensions of the SVMs ideas, by considering the Soft Margin Classification, SVM multi-class classification, SVM clustering, and SVM regression.
(2019). Kernel Methods: Support Vector Machines . Retrieved from http://hdl.handle.net/10446/150352
Kernel Methods: Support Vector Machines
Dondi, Riccardo
2019-01-01
Abstract
Support Vector Machines (SVMs) and Kernel methods have found a natural and effective coexistence since their introduction in the early 90s. In this article, we will describe the main concepts that motivate the importance of this relationship. In fact SVMs use kernels for learning linear predictors in high dimensional feature spaces. First, we will describe intuitively how this mechanism is realized, introducing the main concepts and definitions, i.e., maximum margin hyperplane, kernels and non-linearly separable problems. Then the main mathematical issues for linear and nonlinear SVM-based classification will be detailed. We will also introduce some important extensions of the SVMs ideas, by considering the Soft Margin Classification, SVM multi-class classification, SVM clustering, and SVM regression.File | Dimensione del file | Formato | |
---|---|---|---|
EncyKernelSVM2018.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
605.47 kB
Formato
Adobe PDF
|
605.47 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo