The identification of cohesive communities (dense sub-graphs) is a typical task applied to the analysis of social and biological networks. Different definitions of communities have been adopted for particular occurrences. One of these, the 2-club (dense subgraphs with diameter value at most of length 2) has been revealed of interest for applications and theoretical studies. Unfortunately, the identification of 2-clubs is a computationally intractable problem, and the search of approximate solutions (at a reasonable time) is therefore fundamental in many practical areas. In this article, we present a genetic algorithm based heuristic to compute a collection of Top k 2-clubs, i.e., a set composed by the largest k 2-clubs which cover an input graph. In particular, we discuss some preliminary results for synthetic data obtained by sampling Erdös-Rényi random graphs.
(2019). Top k 2-clubs in a network: A genetic algorithm . Retrieved from http://hdl.handle.net/10446/150654
Top k 2-clubs in a network: A genetic algorithm
Dondi, Riccardo;
2019-01-01
Abstract
The identification of cohesive communities (dense sub-graphs) is a typical task applied to the analysis of social and biological networks. Different definitions of communities have been adopted for particular occurrences. One of these, the 2-club (dense subgraphs with diameter value at most of length 2) has been revealed of interest for applications and theoretical studies. Unfortunately, the identification of 2-clubs is a computationally intractable problem, and the search of approximate solutions (at a reasonable time) is therefore fundamental in many practical areas. In this article, we present a genetic algorithm based heuristic to compute a collection of Top k 2-clubs, i.e., a set composed by the largest k 2-clubs which cover an input graph. In particular, we discuss some preliminary results for synthetic data obtained by sampling Erdös-Rényi random graphs.File | Dimensione del file | Formato | |
---|---|---|---|
ICCS2019.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
246.55 kB
Formato
Adobe PDF
|
246.55 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo