This research work presents a preliminary study for the assessment of lymphedema using low-cost 3D scanning and modelling technology. The aim is to develop a methodology to measure the anatomical key features of the upper limbs lymphedema using a 3D scanning technology and an ad-hoc developed application, named Lym 3DLab. The application is able to automatically measure both perimeters of cross sections and volumes of arm segments for medical evaluation and design of compression stockings using the upper limb polygonal mesh. The scanning procedure is based on a Microsoft Kinect v1 as scanner and the low-cost Skanect tool, which creates the polygonal mesh of the 3D acquisition. Lym 3DLab has been developed using open-source Software Development Kits, such as Qt and Visualization Toolkit. The acquired volumes have been compared with the water displacement method, which is considered the gold standard for measuring volumes of limbs affected by lymphedema. A preliminary test has been performed to compare volumes measured using the developed procedure with the gold standard. Five volunteers have been involved who are not affected by lymphedema. The arm volume measured with water displacement have been compared with the volume computed using 3D model of arm in Lym 3DLab. The range of differences is between −6,75 cm3 and 9,40 cm3. Reached results are the base for planning further test with a large number of patients affected by lymphedema in collaboration with a hospital.

(2020). 3D Scanning Procedure for the Evaluation of Lymphedema of Upper Limbs Using Low-Cost Technology: A Preliminary Study . Retrieved from http://hdl.handle.net/10446/153246

3D Scanning Procedure for the Evaluation of Lymphedema of Upper Limbs Using Low-Cost Technology: A Preliminary Study

Vitali, Andrea;Regazzoni, Daniele;Rizzi, Caterina;
2020

Abstract

This research work presents a preliminary study for the assessment of lymphedema using low-cost 3D scanning and modelling technology. The aim is to develop a methodology to measure the anatomical key features of the upper limbs lymphedema using a 3D scanning technology and an ad-hoc developed application, named Lym 3DLab. The application is able to automatically measure both perimeters of cross sections and volumes of arm segments for medical evaluation and design of compression stockings using the upper limb polygonal mesh. The scanning procedure is based on a Microsoft Kinect v1 as scanner and the low-cost Skanect tool, which creates the polygonal mesh of the 3D acquisition. Lym 3DLab has been developed using open-source Software Development Kits, such as Qt and Visualization Toolkit. The acquired volumes have been compared with the water displacement method, which is considered the gold standard for measuring volumes of limbs affected by lymphedema. A preliminary test has been performed to compare volumes measured using the developed procedure with the gold standard. Five volunteers have been involved who are not affected by lymphedema. The arm volume measured with water displacement have been compared with the volume computed using 3D model of arm in Lym 3DLab. The range of differences is between −6,75 cm3 and 9,40 cm3. Reached results are the base for planning further test with a large number of patients affected by lymphedema in collaboration with a hospital.
Vitali, Andrea; Regazzoni, Daniele; Rizzi, Caterina; Molinero, Guido
File allegato/i alla scheda:
File Dimensione del file Formato  
adm_19_vitali_regazzoni_rizzi_molinero_REVIEWED_final.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 581.72 kB
Formato Adobe PDF
581.72 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/153246
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact