In the last decades Computational Fluid Dynamics has become a widespread practice in several industrial fields, e.g., aerodynamics, aeroacoustic. The growing need of high-fidelity flow simulations for the accurate determination of problem-specific quantities paved the way to higher-order methods such as the discontinuous Galerkin (DG) method. In this context, the industrial interest is strongly promoting the development of more and more efficient high-order CFD solvers. In this work we exploit some techniques, i.e. p-adaptation, quadrature reduction and load balancing, to enhance the computational efficiency of an existing DG code. The accuracy and efficiency of our approach will be assessed by computing the implicit Large Eddy Simulation of the flow past a circular cylinder at Reynolds number Re = 3900, and around a NACA0018 airfoil at Reynolds number Re = 10000 and angle of attack α = 15°

(2020). A p-adaptive implicit discontinuous Galerkin method for the under-resolved simulation of compressible turbulent flows . Retrieved from http://hdl.handle.net/10446/157304

A p-adaptive implicit discontinuous Galerkin method for the under-resolved simulation of compressible turbulent flows

Colombo, A.;Bassi, F.
2020-01-01

Abstract

In the last decades Computational Fluid Dynamics has become a widespread practice in several industrial fields, e.g., aerodynamics, aeroacoustic. The growing need of high-fidelity flow simulations for the accurate determination of problem-specific quantities paved the way to higher-order methods such as the discontinuous Galerkin (DG) method. In this context, the industrial interest is strongly promoting the development of more and more efficient high-order CFD solvers. In this work we exploit some techniques, i.e. p-adaptation, quadrature reduction and load balancing, to enhance the computational efficiency of an existing DG code. The accuracy and efficiency of our approach will be assessed by computing the implicit Large Eddy Simulation of the flow past a circular cylinder at Reynolds number Re = 3900, and around a NACA0018 airfoil at Reynolds number Re = 10000 and angle of attack α = 15°
2020
Colombo, Alessandro; Manzinali, G.; Ghidoni, A.; Noventa, G.; Franciolini, M.; Crivellini, A.; Bassi, Francesco
File allegato/i alla scheda:
File Dimensione del file Formato  
padp-eccomas.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/157304
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact