Hypothesis: From the end of the twentieth century, the growing interest in a new generation of wearable electronics with attractive application for military, medical and smart textiles fields has led to a wide investigation of chemical finishes for the production of electronic textiles (e-textiles). Experiments: Herein, a novel method to turn insulating cotton fabrics in electrically conductive by the deposition of three-dimensional hierarchical vertically aligned carbon nanotubes (VACNT) is proposed. Two VACNT samples with different length were synthesized and then dispersed in 4-dodecylbenzene sulfonic acid combined with silica-based sol-gel precursors. The dispersed VACNT were separately compounded with a polyurethane thickener to obtain homogeneous spreadable pastes, finally coated onto cotton surfaces by the “knife-over-roll” technique. Findings: Shorter VACNT-based composite showed the best electrical conductivity, with a sheet resistance value less than 4 · 104 ± 6.7 · 103 Ω/sq. As demonstrated, developed e-textiles are suitable for application as humidity sensing materials in wearable smart textiles by exhibiting adequate response time for end-users and repeatability at several exposure cycles, still maintaining excellent flexibility. The proposed environmentally-friendly and cost-effective method can be easily widened to the scalable production of CNT-containing conductive flexible coatings, providing additional support to the development of real integration between electronics and textiles.

(2021). Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution [journal article - articolo]. In JOURNAL OF COLLOID AND INTERFACE SCIENCE. Retrieved from http://hdl.handle.net/10446/167335

Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution

Trovato, Valentina;Re, Valerio;Rosace, Giuseppe
2021-01-01

Abstract

Hypothesis: From the end of the twentieth century, the growing interest in a new generation of wearable electronics with attractive application for military, medical and smart textiles fields has led to a wide investigation of chemical finishes for the production of electronic textiles (e-textiles). Experiments: Herein, a novel method to turn insulating cotton fabrics in electrically conductive by the deposition of three-dimensional hierarchical vertically aligned carbon nanotubes (VACNT) is proposed. Two VACNT samples with different length were synthesized and then dispersed in 4-dodecylbenzene sulfonic acid combined with silica-based sol-gel precursors. The dispersed VACNT were separately compounded with a polyurethane thickener to obtain homogeneous spreadable pastes, finally coated onto cotton surfaces by the “knife-over-roll” technique. Findings: Shorter VACNT-based composite showed the best electrical conductivity, with a sheet resistance value less than 4 · 104 ± 6.7 · 103 Ω/sq. As demonstrated, developed e-textiles are suitable for application as humidity sensing materials in wearable smart textiles by exhibiting adequate response time for end-users and repeatability at several exposure cycles, still maintaining excellent flexibility. The proposed environmentally-friendly and cost-effective method can be easily widened to the scalable production of CNT-containing conductive flexible coatings, providing additional support to the development of real integration between electronics and textiles.
articolo
2021
Trovato, Valentina; Teblum, Eti; Kostikov, Yulia; Pedrana, Andrea; Re, Valerio; Daniel Nessim, Gilbert; Rosace, Giuseppe
(2021). Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution [journal article - articolo]. In JOURNAL OF COLLOID AND INTERFACE SCIENCE. Retrieved from http://hdl.handle.net/10446/167335
File allegato/i alla scheda:
File Dimensione del file Formato  
proof_YJCIS_27107.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/167335
Citazioni
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact