Model Predictive Control for Tracking (MPCT) is an advanced control strategy that allows to change the reference point without losing feasibility. Furthermore, the formulation of the MPCT allows to enlarge the domain of attraction conceding it higher controllability. These advantages make it a strategy with wide variety of applications. The goal of this work is to give a comparison between the existing formulations of Robust MPCT and stochastic MPCT. An illustrative example shows the properties of theses controllers.

(2018). Robust and Stochastic MPC for tracking: a performance comparison . Retrieved from http://hdl.handle.net/10446/169392

Robust and Stochastic MPC for tracking: a performance comparison

Ferramosca, Antonio
2018-01-01

Abstract

Model Predictive Control for Tracking (MPCT) is an advanced control strategy that allows to change the reference point without losing feasibility. Furthermore, the formulation of the MPCT allows to enlarge the domain of attraction conceding it higher controllability. These advantages make it a strategy with wide variety of applications. The goal of this work is to give a comparison between the existing formulations of Robust MPCT and stochastic MPCT. An illustrative example shows the properties of theses controllers.
2018
D'Jorge, Agustina; Anderson, Alejandro; González, Alejandro H.; Ferramosca, Antonio
File allegato/i alla scheda:
File Dimensione del file Formato  
DJorgeAADECA2018.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/169392
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact