This paper deals with the tracking problem for constrained nonlinear systems using a model predictive control (MPC) law. MPC provides a control law suitable for regulating constrained linear and nonlinear systems to a given target steady state. However, when the target operating point changes, the feasibility of the controller may be lost and the controller fails to track the reference. In this paper, a novel MPC for tracking changing constant references is presented. The main characteristics of this controller are: (i) considering an artificial steady state as a decision variable, (ii) minimizing a cost that penalizes the error with the artificial steady state, (iii) adding to the cost function an additional term that penalizes the deviation between the artificial steady state and the target steady state (the so-called offset cost function) and (iv) considering an invariant set for tracking as extended terminal constraint. The calculation of the stabilizing parameters of the proposed controller is studied and some methods are proposed. The properties of this controller has been tested on a constrained CSTR simulation model.

(2009). MPC for tracking of constrained nonlinear systems . Retrieved from http://hdl.handle.net/10446/169516

MPC for tracking of constrained nonlinear systems

Ferramosca, Antonio;
2009-01-01

Abstract

This paper deals with the tracking problem for constrained nonlinear systems using a model predictive control (MPC) law. MPC provides a control law suitable for regulating constrained linear and nonlinear systems to a given target steady state. However, when the target operating point changes, the feasibility of the controller may be lost and the controller fails to track the reference. In this paper, a novel MPC for tracking changing constant references is presented. The main characteristics of this controller are: (i) considering an artificial steady state as a decision variable, (ii) minimizing a cost that penalizes the error with the artificial steady state, (iii) adding to the cost function an additional term that penalizes the deviation between the artificial steady state and the target steady state (the so-called offset cost function) and (iv) considering an invariant set for tracking as extended terminal constraint. The calculation of the stabilizing parameters of the proposed controller is studied and some methods are proposed. The properties of this controller has been tested on a constrained CSTR simulation model.
2009
Ferramosca, Antonio; Limon, Daniel; Alvarado, Ignacio; Alamo, Teodoro; Camacho, Eduardo F.
File allegato/i alla scheda:
File Dimensione del file Formato  
TrackingNL.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri
Dichiarazione di difformità.pdf

Solo gestori di archivio

Versione: non applicabile
Licenza: Licenza default Aisberg
Dimensione del file 109.85 kB
Formato Adobe PDF
109.85 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/169516
Citazioni
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 36
social impact