Hemodialysis (HD) is nowadays the most common therapy to treat renal insufficiency. However, despite the improvements made in the last years, HD is still associated with a non-negligible rate of co-morbidities, which could be reduced by means of an appropriate treatment customization. Many differential multi-compartment models have been developed to describe solute kinetics during HD, to optimize treatments, and to prevent intra-dialysis complications; however, they often refer to an average uremic patient. On the contrary, the clinical need for customization requires patient-specific models. In this work, assuming that the customization can be obtained by means of patient-specific model parameters, we propose a Bayesian approach to estimate the patient-specific parameters of a multi-compartment model and to predict the single patient’s response to the treatment, in order to prevent intra-dialysis complications. The likelihood function is obtained through a discretized version of a multi-compartment model, where the discretization is in terms of a Runge–Kutta method to guarantee the convergence, and the posterior densities of model parameters are obtained through Markov Chain Monte Carlo simulation.

(2017). Identification of patient-specific parameters in a kinetic model of fluid and mass transfer during dialysis . Retrieved from http://hdl.handle.net/10446/171360

Identification of patient-specific parameters in a kinetic model of fluid and mass transfer during dialysis

Lanzarone, Ettore;
2017-01-01

Abstract

Hemodialysis (HD) is nowadays the most common therapy to treat renal insufficiency. However, despite the improvements made in the last years, HD is still associated with a non-negligible rate of co-morbidities, which could be reduced by means of an appropriate treatment customization. Many differential multi-compartment models have been developed to describe solute kinetics during HD, to optimize treatments, and to prevent intra-dialysis complications; however, they often refer to an average uremic patient. On the contrary, the clinical need for customization requires patient-specific models. In this work, assuming that the customization can be obtained by means of patient-specific model parameters, we propose a Bayesian approach to estimate the patient-specific parameters of a multi-compartment model and to predict the single patient’s response to the treatment, in order to prevent intra-dialysis complications. The likelihood function is obtained through a discretized version of a multi-compartment model, where the discretization is in terms of a Runge–Kutta method to guarantee the convergence, and the posterior densities of model parameters are obtained through Markov Chain Monte Carlo simulation.
2017
Bianchi, Camilla; Lanzarone, Ettore; Casagrande, Giustina; Costantino, Maria Laura
File allegato/i alla scheda:
File Dimensione del file Formato  
Book.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 7.35 MB
Formato Adobe PDF
7.35 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/171360
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact