The dependence of inclusive jet production in proton-proton collisions with a center-of-mass energy of 13 TeV on the distance parameter R of the anti-kT algorithm is studied using data corresponding to integrated luminosities up to 35.9 fb−1 collected by the CMS experiment in 2016. The ratios of the inclusive cross sections as functions of transverse momentum pT and rapidity y, for R in the range 0.1 to 1.2 to those using R = 0.4 are presented in the region 84 < pT< 1588 GeV and |y|< 2.0. The results are compared to calculations at leading and next-to-leading order in the strong coupling constant using different parton shower models. The variation of the ratio of cross sections with R is well described by calculations including a parton shower model, but not by a leading-order quantum chromodynamics calculation including nonperturbative effects. The agreement between the data and the theoretical predictions for the ratios of cross sections is significantly improved when next-to-leading order calculations with nonperturbative effects are used.
(2020). Dependence of inclusive jet production on the anti-kT distance parameter in pp collisions at √s = 13 TeV [journal article - articolo]. In JOURNAL OF HIGH ENERGY PHYSICS. Retrieved from http://hdl.handle.net/10446/171381
Dependence of inclusive jet production on the anti-kT distance parameter in pp collisions at √s = 13 TeV
Re V.;Vai I.;
2020-01-01
Abstract
The dependence of inclusive jet production in proton-proton collisions with a center-of-mass energy of 13 TeV on the distance parameter R of the anti-kT algorithm is studied using data corresponding to integrated luminosities up to 35.9 fb−1 collected by the CMS experiment in 2016. The ratios of the inclusive cross sections as functions of transverse momentum pT and rapidity y, for R in the range 0.1 to 1.2 to those using R = 0.4 are presented in the region 84 < pT< 1588 GeV and |y|< 2.0. The results are compared to calculations at leading and next-to-leading order in the strong coupling constant using different parton shower models. The variation of the ratio of cross sections with R is well described by calculations including a parton shower model, but not by a leading-order quantum chromodynamics calculation including nonperturbative effects. The agreement between the data and the theoretical predictions for the ratios of cross sections is significantly improved when next-to-leading order calculations with nonperturbative effects are used.File | Dimensione del file | Formato | |
---|---|---|---|
Sirunyan2020_Article_DependenceOfInclusiveJetProduc.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
738.24 kB
Formato
Adobe PDF
|
738.24 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo