In many engineering applications, continuous-time models are preferred to discrete-time ones, in that they provide good physical insight and can be derived also from non-uniformly sampled data. However, for such models, model selection is a hard task if no prior physical knowledge is given. In this paper, we propose a non-parametric approach to infer a continuous-time linear model from data, by automatically selecting a proper structure of the transfer function and guaranteeing to preserve the system stability properties. By means of benchmark simulation examples, the proposed approach is shown to outperform state-of-the-art continuous-time methods, also in the critical case when short sequences of canonical input signals, like impulses or steps, are used for model learning.
(2022). Kernel-based identification of asymptotically stable continuous-time linear dynamical systems [journal article - articolo]. In INTERNATIONAL JOURNAL OF CONTROL. Retrieved from http://hdl.handle.net/10446/171530
Kernel-based identification of asymptotically stable continuous-time linear dynamical systems
Scandella, Matteo;Mazzoleni, Mirko;Previdi, Fabio
2022-01-01
Abstract
In many engineering applications, continuous-time models are preferred to discrete-time ones, in that they provide good physical insight and can be derived also from non-uniformly sampled data. However, for such models, model selection is a hard task if no prior physical knowledge is given. In this paper, we propose a non-parametric approach to infer a continuous-time linear model from data, by automatically selecting a proper structure of the transfer function and guaranteeing to preserve the system stability properties. By means of benchmark simulation examples, the proposed approach is shown to outperform state-of-the-art continuous-time methods, also in the critical case when short sequences of canonical input signals, like impulses or steps, are used for model learning.File | Dimensione del file | Formato | |
---|---|---|---|
Kernel based identification of asymptotically stable continuous time linear dynamical systems.pdf
Solo gestori di archivio
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Licenza default Aisberg
Dimensione del file
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo