The rapid increase in the number of electric vehicles around the world, the high demands on the charging stations, and the challenges for locating the charging stations made researchers around the globe to think for a proper solution. In this paper, a new method to locate EV's charging infrastructures, based on the parallelism between mobility needs and heat equation implemented with Finite Element Method analysis (FEM), is proposed. The method is applied for two cities with similar metropolitan area: Boston (USA) and Milan (Italy), with further results. Although FEM is a mathematical tool for solving physical problems, the behavior of different parameters in this paper is modeled as physical objects. In addition, the parameters are modeled according to the heat equation. Heat density maps are elaborated for the considered case studies. The two cities with extremely different characteristics are chosen to demonstrate the general application of the proposed method. Heat density maps show the likely demand points to establish charging infrastructures for EV's. The annual electricity consumption maps of the two considered cities are reported. The analysis of heat density and electricity consumption maps, together with the considerations of mains supply capacity can give a perspective for the location of charging stations in the future urban environments. The developed method contributes to deploy charging stations in an urban environment.

(2020). Dynamic Model for the EV's Charging Infrastructure Planning through Finite Element Method [journal article - articolo]. In IEEE ACCESS. Retrieved from http://hdl.handle.net/10446/182674

Dynamic Model for the EV's Charging Infrastructure Planning through Finite Element Method

Roscia, Mariacristina;Saadatmandi, Soheil
2020-01-01

Abstract

The rapid increase in the number of electric vehicles around the world, the high demands on the charging stations, and the challenges for locating the charging stations made researchers around the globe to think for a proper solution. In this paper, a new method to locate EV's charging infrastructures, based on the parallelism between mobility needs and heat equation implemented with Finite Element Method analysis (FEM), is proposed. The method is applied for two cities with similar metropolitan area: Boston (USA) and Milan (Italy), with further results. Although FEM is a mathematical tool for solving physical problems, the behavior of different parameters in this paper is modeled as physical objects. In addition, the parameters are modeled according to the heat equation. Heat density maps are elaborated for the considered case studies. The two cities with extremely different characteristics are chosen to demonstrate the general application of the proposed method. Heat density maps show the likely demand points to establish charging infrastructures for EV's. The annual electricity consumption maps of the two considered cities are reported. The analysis of heat density and electricity consumption maps, together with the considerations of mains supply capacity can give a perspective for the location of charging stations in the future urban environments. The developed method contributes to deploy charging stations in an urban environment.
articolo
2020
Brenna, Morris; Lazaroiu, George Cristian; Roscia, Mariacristina; Saadatmandi, Soheil
(2020). Dynamic Model for the EV's Charging Infrastructure Planning through Finite Element Method [journal article - articolo]. In IEEE ACCESS. Retrieved from http://hdl.handle.net/10446/182674
File allegato/i alla scheda:
File Dimensione del file Formato  
09104699.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/182674
Citazioni
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 9
social impact