Lanthanum orthoferrites are a versatile class of catalysts. Here, the photocatalytic bactericidal performance of LaFeO3 (LF) to inactivate pathogenic microorganisms, i.e., Escherichia coli (E. coli), in water under simulated solar irradiation conditions was investigated. Various competing and contributing factors were covered to visualize the reaction medium consisting of E. coli K12 cells, organic sub-fractions formed by cell destruction, and LF surface. LF solar photocatalytic inactivation (SPCI) kinetics revealed the highest inactivation rate in ultrapure water as expected, followed by distilled water (DW), aqueous solution containing anions and cations (WM) and saline solution (SS). Characterization of the released organic matter was achieved by UV-vis and fluorescence spectroscopic techniques as well as organic carbon contents (DOC). Upon SPCI, significant amounts of K+ along with released protein contents were detected expressing cell wall destruction and lysis. Under the specified experimental conditions, in the presence of released intracellular organic and inorganic components via cell lysis, a significant count of E. coli was still present in SS, whereas almost all bacteria were removed in other matrices due to various challenging reasons. Based on the presented data, SPCI of E. coli using LF as a novel photocatalyst was successfully demonstrated as an alternative and promising method for disinfection purposes.
(2021). Photocatalytic bactericidal performance of lafeo3 under solar light: Kinetics, spectroscopic and mechanistic evaluation [journal article - articolo]. In WATER. Retrieved from http://hdl.handle.net/10446/185911
Photocatalytic bactericidal performance of lafeo3 under solar light: Kinetics, spectroscopic and mechanistic evaluation
Pelosato, Renato;Natali Sora, Isabella;
2021-01-01
Abstract
Lanthanum orthoferrites are a versatile class of catalysts. Here, the photocatalytic bactericidal performance of LaFeO3 (LF) to inactivate pathogenic microorganisms, i.e., Escherichia coli (E. coli), in water under simulated solar irradiation conditions was investigated. Various competing and contributing factors were covered to visualize the reaction medium consisting of E. coli K12 cells, organic sub-fractions formed by cell destruction, and LF surface. LF solar photocatalytic inactivation (SPCI) kinetics revealed the highest inactivation rate in ultrapure water as expected, followed by distilled water (DW), aqueous solution containing anions and cations (WM) and saline solution (SS). Characterization of the released organic matter was achieved by UV-vis and fluorescence spectroscopic techniques as well as organic carbon contents (DOC). Upon SPCI, significant amounts of K+ along with released protein contents were detected expressing cell wall destruction and lysis. Under the specified experimental conditions, in the presence of released intracellular organic and inorganic components via cell lysis, a significant count of E. coli was still present in SS, whereas almost all bacteria were removed in other matrices due to various challenging reasons. Based on the presented data, SPCI of E. coli using LF as a novel photocatalyst was successfully demonstrated as an alternative and promising method for disinfection purposes.File | Dimensione del file | Formato | |
---|---|---|---|
21_water-13-01135.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
2.62 MB
Formato
Adobe PDF
|
2.62 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo