Heart failure (HF) with preserved ejection fraction (HFpEF) is a chronic cardiac condition whose prevalence continues to rise, with high social and economic burden, but with no specific approved treatment. Patients diagnosed with HFpEF have a high prevalence of comorbidities and exhibit a high misdiagnosis rate. True HFpEF is likely to have multiple pathophysiological causes – with these causes being clinically ill-defined due to limitations of current measurement techniques. Myocyte, interstitium, microvascular, and metabolic abnormalities have been regarded as key components of the pathophysiology and potential therapeutic targets. Cardiac magnetic resonance (CMR) has the capability to look deeper with a number of tissue characterization techniques which are closer to the underlying specific abnormalities and which could be linked to personalized medicine for HFpEF. This review aims to discuss the potential role of CMR to better define HFpEF phenotypes and to infer measurable therapeutic targets.
(2020). Cardiac magnetic resonance in heart failure with preserved ejection fraction: myocyte, interstitium, microvascular, and metabolic abnormalities [journal article - articolo]. In EUROPEAN JOURNAL OF HEART FAILURE. Retrieved from http://hdl.handle.net/10446/188876
Cardiac magnetic resonance in heart failure with preserved ejection fraction: myocyte, interstitium, microvascular, and metabolic abnormalities
Caravita, Sergio;
2020-01-01
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a chronic cardiac condition whose prevalence continues to rise, with high social and economic burden, but with no specific approved treatment. Patients diagnosed with HFpEF have a high prevalence of comorbidities and exhibit a high misdiagnosis rate. True HFpEF is likely to have multiple pathophysiological causes – with these causes being clinically ill-defined due to limitations of current measurement techniques. Myocyte, interstitium, microvascular, and metabolic abnormalities have been regarded as key components of the pathophysiology and potential therapeutic targets. Cardiac magnetic resonance (CMR) has the capability to look deeper with a number of tissue characterization techniques which are closer to the underlying specific abnormalities and which could be linked to personalized medicine for HFpEF. This review aims to discuss the potential role of CMR to better define HFpEF phenotypes and to infer measurable therapeutic targets.File | Dimensione del file | Formato | |
---|---|---|---|
ejhf.1961_compressed.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
474.37 kB
Formato
Adobe PDF
|
474.37 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo