We prove an Euler-Maclaurin formula for double polygonal sums and, as a corollary, we obtain approximate quadrature formulas for integrals of smooth functions over polygons with integer vertices. Our Euler-Maclaurin formula is in the spirit of Pick’s theorem on the number of integer points in an integer polygon and involves weighted Riemann sums, using tools from Harmonic analysis. Finally, we also exhibit a classical trick, dating back to Huygens and Newton, to accelerate convergence of these Riemann sums.

(2022). An Euler-MacLaurin formula for polygonal sums [journal article - articolo]. In TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. Retrieved from http://hdl.handle.net/10446/193762

An Euler-MacLaurin formula for polygonal sums

Brandolini, Luca;
2022-01-01

Abstract

We prove an Euler-Maclaurin formula for double polygonal sums and, as a corollary, we obtain approximate quadrature formulas for integrals of smooth functions over polygons with integer vertices. Our Euler-Maclaurin formula is in the spirit of Pick’s theorem on the number of integer points in an integer polygon and involves weighted Riemann sums, using tools from Harmonic analysis. Finally, we also exhibit a classical trick, dating back to Huygens and Newton, to accelerate convergence of these Riemann sums.
articolo
2022
Brandolini, Luca; Colzani, Leonardo; Robins, Sinai; Travaglini, Giancarlo
(2022). An Euler-MacLaurin formula for polygonal sums [journal article - articolo]. In TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. Retrieved from http://hdl.handle.net/10446/193762
File allegato/i alla scheda:
File Dimensione del file Formato  
New BrandoliniColzaniRobinsTravaglini_Euler-MacLaurin.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 330.43 kB
Formato Adobe PDF
330.43 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/193762
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact