In this article, we discuss set estimation in a Bayesian framework. In particular, we give a formal definition for a credible set in the general multivariate parameter setting and detail the unidimensional case when the set estimator is restricted to be an interval. Moreover, we comment upon differences and similarities between interval estimates via Bayesian and non-Bayesian methods. It is customary to ask that the credible set satisfies a minimum size optimality criterion, leading to the definition of highest posterior density regions. We mention some theoretical and computational issues of these optimal regions.

(2016). Credible Intervals . Retrieved from http://hdl.handle.net/10446/193996

Credible Intervals

Argiento, Raffaele
2016-01-01

Abstract

In this article, we discuss set estimation in a Bayesian framework. In particular, we give a formal definition for a credible set in the general multivariate parameter setting and detail the unidimensional case when the set estimator is restricted to be an interval. Moreover, we comment upon differences and similarities between interval estimates via Bayesian and non-Bayesian methods. It is customary to ask that the credible set satisfies a minimum size optimality criterion, leading to the definition of highest posterior density regions. We mention some theoretical and computational issues of these optimal regions.
2016
Argiento, Raffaele
File allegato/i alla scheda:
File Dimensione del file Formato  
Credible_int_da_caricare.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 384.87 kB
Formato Adobe PDF
384.87 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/193996
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact