In this article, we discuss set estimation in a Bayesian framework. In particular, we give a formal definition for a credible set in the general multivariate parameter setting and detail the unidimensional case when the set estimator is restricted to be an interval. Moreover, we comment upon differences and similarities between interval estimates via Bayesian and non-Bayesian methods. It is customary to ask that the credible set satisfies a minimum size optimality criterion, leading to the definition of highest posterior density regions. We mention some theoretical and computational issues of these optimal regions.
(2016). Credible Intervals . Retrieved from http://hdl.handle.net/10446/193996
Credible Intervals
Argiento, Raffaele
2016-01-01
Abstract
In this article, we discuss set estimation in a Bayesian framework. In particular, we give a formal definition for a credible set in the general multivariate parameter setting and detail the unidimensional case when the set estimator is restricted to be an interval. Moreover, we comment upon differences and similarities between interval estimates via Bayesian and non-Bayesian methods. It is customary to ask that the credible set satisfies a minimum size optimality criterion, leading to the definition of highest posterior density regions. We mention some theoretical and computational issues of these optimal regions.File | Dimensione del file | Formato | |
---|---|---|---|
Credible_int_da_caricare.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
384.87 kB
Formato
Adobe PDF
|
384.87 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo