Solar photocatalytic inactivation (SPCI) of E. coli as the indicator microorganism using LaFeO3 (LF) has already been investigated under various experimental conditions, excluding any role of natural organic matter (NOM). However, comprehensive information about the behavior of E. coli and its inactivation mechanism in the presence of NOM, as well as the behavior of NOM components via solar photocatalysis using LF as a photocatalyst, has prime importance in understanding real natural water environments. Therefore, in this study, further assessment was devoted to explore the influence of various NOM representatives on the SPCI of E. coli by using LF as a novel non-TiO2 photocatalyst. The influence of NOM as well as its sub-components, such as humic acids (HA) and fulvic acids (FA), was also investigated to understand different NOM-related constituents of real natural water conditions. In addition to spectroscopic and mechanistic investigations of cell-derived organics, excitation emission matrix (EEM) fluorescence spectra with parallel factor multiway analysis (PARAFAC) modeling revealed further information about the occurrence and/or disappearance of NOM-related and bacteria-related fluorophores upon LF SPCI. Both the kinetics as well as the mechanism of the LF SPCI of E. coli in the presence of NOM compounds displayed substrate-specific variations under all conditions.
(2021). Photocatalytic bactericidal performance of LaFeO3 under solar light in the presence of natural organic matter: Spectroscopic and mechanistic evaluation [journal article - articolo]. In WATER. Retrieved from http://hdl.handle.net/10446/195724
Photocatalytic bactericidal performance of LaFeO3 under solar light in the presence of natural organic matter: Spectroscopic and mechanistic evaluation
Pelosato, Renato;Natali Sora, Isabella;
2021-01-01
Abstract
Solar photocatalytic inactivation (SPCI) of E. coli as the indicator microorganism using LaFeO3 (LF) has already been investigated under various experimental conditions, excluding any role of natural organic matter (NOM). However, comprehensive information about the behavior of E. coli and its inactivation mechanism in the presence of NOM, as well as the behavior of NOM components via solar photocatalysis using LF as a photocatalyst, has prime importance in understanding real natural water environments. Therefore, in this study, further assessment was devoted to explore the influence of various NOM representatives on the SPCI of E. coli by using LF as a novel non-TiO2 photocatalyst. The influence of NOM as well as its sub-components, such as humic acids (HA) and fulvic acids (FA), was also investigated to understand different NOM-related constituents of real natural water conditions. In addition to spectroscopic and mechanistic investigations of cell-derived organics, excitation emission matrix (EEM) fluorescence spectra with parallel factor multiway analysis (PARAFAC) modeling revealed further information about the occurrence and/or disappearance of NOM-related and bacteria-related fluorophores upon LF SPCI. Both the kinetics as well as the mechanism of the LF SPCI of E. coli in the presence of NOM compounds displayed substrate-specific variations under all conditions.File | Dimensione del file | Formato | |
---|---|---|---|
water-13-02785_paper 2.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
6.59 MB
Formato
Adobe PDF
|
6.59 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo