We introduce a Littlewood--Paley decomposition related to any sub-Laplacian on a Lie group G of polynomial volume growth; this allows us to prove a Littlewood--Paley theorem in this general setting and to provide a dyadic characterization of Besov spaces B^{s,q}_p(G), s in R, equivalent to the classical definition through the heat kernel.
Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth
FURIOLI, Giulia Maria Dalia;
2006-01-01
Abstract
We introduce a Littlewood--Paley decomposition related to any sub-Laplacian on a Lie group G of polynomial volume growth; this allows us to prove a Littlewood--Paley theorem in this general setting and to provide a dyadic characterization of Besov spaces B^{s,q}_p(G), s in R, equivalent to the classical definition through the heat kernel.File allegato/i alla scheda:
Non ci sono file allegati a questa scheda.
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo