The application of the electrophoretic deposition (EPD) technique to the preparation of high quality electrolyte films for intermediate temperature solid oxide fuel cells (IT-SOFCs) was investigated. Films of La0.83Sr0.17Ga0.83Mg0.17O2.83 (LSGM) were deposited on Pt and La0.8Sr0.2MnO3 (LSM) substrates from suspensions in acetone/ethanol (3:1 by volume) mixture solvent and sintered at 1300 °C. Pt supported LSGM films, 10–20 μm thick, exhibited good adhesion to the Pt substrate, well-distributed microporosity and some surface roughness. LSM supported films exhibited cracking after sintering at 1300 °C for 3 h. Up to 900 °C the bulk conductivity of the Pt supported LSGM film showed the same behaviour of LSGM pellet (Ea=0.93 eV and 0.99 eV, respectively). The LSGM film exhibited lower bulk electrical conductivity than the latter (4.1×10- 3 and 4.4×10- 2 Ω- 1 cm- 1, respectively, at 700 °C). This difference should be ascribed to the slight Ga depletion in the LSGM film. An important issue remains the selection of adequate electrode for LSGM electrolyte films.
Characterization of LSGM films obtained by electrophoretic deposition (EPD)
NATALI SORA, Isabella;PELOSATO, Renato;
2006-01-01
Abstract
The application of the electrophoretic deposition (EPD) technique to the preparation of high quality electrolyte films for intermediate temperature solid oxide fuel cells (IT-SOFCs) was investigated. Films of La0.83Sr0.17Ga0.83Mg0.17O2.83 (LSGM) were deposited on Pt and La0.8Sr0.2MnO3 (LSM) substrates from suspensions in acetone/ethanol (3:1 by volume) mixture solvent and sintered at 1300 °C. Pt supported LSGM films, 10–20 μm thick, exhibited good adhesion to the Pt substrate, well-distributed microporosity and some surface roughness. LSM supported films exhibited cracking after sintering at 1300 °C for 3 h. Up to 900 °C the bulk conductivity of the Pt supported LSGM film showed the same behaviour of LSGM pellet (Ea=0.93 eV and 0.99 eV, respectively). The LSGM film exhibited lower bulk electrical conductivity than the latter (4.1×10- 3 and 4.4×10- 2 Ω- 1 cm- 1, respectively, at 700 °C). This difference should be ascribed to the slight Ga depletion in the LSGM film. An important issue remains the selection of adequate electrode for LSGM electrolyte films.Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo