We describe the artifact, publicly available at [1], that implements the proposal in [2], and the reproduction of the experimental results. It is an extended and distributed version of the Mondrian anonymization algorithm. Our solution anonymizes large datasets by partitioning data among workers in a distributed setting. It provides parallel execution on a dynamically chosen number of workers, limiting their interaction and data exchange.

(2021). Artifact: Scalable Distributed Data Anonymization . Retrieved from http://hdl.handle.net/10446/202630

Artifact: Scalable Distributed Data Anonymization

Facchinetti, Dario;Oldani, Gianluca;Paraboschi, Stefano;Rossi, Matthew;
2021-01-01

Abstract

We describe the artifact, publicly available at [1], that implements the proposal in [2], and the reproduction of the experimental results. It is an extended and distributed version of the Mondrian anonymization algorithm. Our solution anonymizes large datasets by partitioning data among workers in a distributed setting. It provides parallel execution on a dynamically chosen number of workers, limiting their interaction and data exchange.
2021
De Capitani Di Vimercati, Sabrina; Facchinetti, Dario; Foresti, Sara; Oldani, Gianluca; Paraboschi, Stefano; Rossi, Matthew; Samarati, Pierangela...espandi
File allegato/i alla scheda:
File Dimensione del file Formato  
percom2021-artifact.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 317.32 kB
Formato Adobe PDF
317.32 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/202630
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact