In this paper we characterize the closed invariant subspaces for the (*-)multiplier operator of the quaternionic space of slice L2 functions. As a consequence, we obtain the innerouter factorization theorem for the quaternionic Hardy space on the unit ball and we provide a characterization of quaternionic outer functions in terms of cyclicity.
(2018). Shift invariant subspaces of slice L2 functions [journal article - articolo]. In ANNALES ACADEMIAE SCIENTIARUM FENNICAE. MATHEMATICA. Retrieved from http://hdl.handle.net/10446/202828
Shift invariant subspaces of slice L2 functions
Monguzzi, Alessandro;
2018-01-01
Abstract
In this paper we characterize the closed invariant subspaces for the (*-)multiplier operator of the quaternionic space of slice L2 functions. As a consequence, we obtain the innerouter factorization theorem for the quaternionic Hardy space on the unit ball and we provide a characterization of quaternionic outer functions in terms of cyclicity.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
2018 - Monguzzi & Sarfatti - Shift Invariant Subspaces of Slice L^2 Functions.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
239.56 kB
Formato
Adobe PDF
|
239.56 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo