Changes in glomerular hemodynamics have been observed in animals and humans after a high-protein feeding. It has been postulated that these changes can induce progressive deterioration of renal function favoring loss of glomerular permselectivity properties and subsequent glomerulosclerosis, especially when the renal mass is already reduced surgically or by a disease process. We studied the consequence of long-term protein supplementation on renal function parameters in normal animals and in animals affected by adriamycin nephrosis, a model of renal damage that closely mimics human "minimal change." We also wanted to investigate whether vasodilatory prostaglandins (PGs) generated at the renal level are responsible for the adaptive hemodynamic changes that follow dietary manipulation in normal animals and in animals with experimental nephrosis. The model of glomerular damage we used is characterized by heavy and persistent proteinuria induced in the rat by adriamycin (ADR). Two isocaloric diets were selected containing 20% and 35% protein. High-protein feeding induced a significant increase in glomerular filtration rate in both normal and nephrotic animals. In normal animals the high-protein diet did not modify the urinary excretion of 6-keto-PGF1α, the stable breakdown product of prostacyclin (PGI2), but significantly reduced urinary excretion of prostaglandin E2. In nephrotic rats, the high-protein diet increased urinary excretion of 6-keto-PGF1α, without modifying urinary excretion of prostaglandin E2. Glomerular synthesis of vasodilatory prostaglandins paralleled the urinary excretion pattern. The cyclooxygenase inhibitor indomethacin effectively inhibited urinary excretion of vasodilatory PGs but did not prevent hyperfiltration in normal animals fed the high-protein diet. At variance, when given to nephrotic animals fed the high-protein diet, indomethacin at a dose that reduced 6-keto-PGF1α and prostaglandin E2 urinary excretion by 84% and 93%, respectively, inhibited hyperfiltration. We conclude that the same hemodynamic changes that occur in normal animals given a high-protein diet also take place when glomeruli are uniformly damaged by a disease process as in ADR nephrosis. However, whereas hyperfiltration in normal animals appears to be independent of renal PGs, in nephrotic animals an enhanced renal synthesis of PGI2 appeals to play a crucial role in the adaptive changes responsible for hyperfiltration.

(1986). Role of renal prostaglandins in normal and nephrotic rats with diet-induced hyperfiltration [journal article - articolo]. In JOURNAL OF LABORATORY AND CLINICAL MEDICINE. Retrieved from http://hdl.handle.net/10446/204463

Role of renal prostaglandins in normal and nephrotic rats with diet-induced hyperfiltration

Remuzzi, Andrea;
1986-01-01

Abstract

Changes in glomerular hemodynamics have been observed in animals and humans after a high-protein feeding. It has been postulated that these changes can induce progressive deterioration of renal function favoring loss of glomerular permselectivity properties and subsequent glomerulosclerosis, especially when the renal mass is already reduced surgically or by a disease process. We studied the consequence of long-term protein supplementation on renal function parameters in normal animals and in animals affected by adriamycin nephrosis, a model of renal damage that closely mimics human "minimal change." We also wanted to investigate whether vasodilatory prostaglandins (PGs) generated at the renal level are responsible for the adaptive hemodynamic changes that follow dietary manipulation in normal animals and in animals with experimental nephrosis. The model of glomerular damage we used is characterized by heavy and persistent proteinuria induced in the rat by adriamycin (ADR). Two isocaloric diets were selected containing 20% and 35% protein. High-protein feeding induced a significant increase in glomerular filtration rate in both normal and nephrotic animals. In normal animals the high-protein diet did not modify the urinary excretion of 6-keto-PGF1α, the stable breakdown product of prostacyclin (PGI2), but significantly reduced urinary excretion of prostaglandin E2. In nephrotic rats, the high-protein diet increased urinary excretion of 6-keto-PGF1α, without modifying urinary excretion of prostaglandin E2. Glomerular synthesis of vasodilatory prostaglandins paralleled the urinary excretion pattern. The cyclooxygenase inhibitor indomethacin effectively inhibited urinary excretion of vasodilatory PGs but did not prevent hyperfiltration in normal animals fed the high-protein diet. At variance, when given to nephrotic animals fed the high-protein diet, indomethacin at a dose that reduced 6-keto-PGF1α and prostaglandin E2 urinary excretion by 84% and 93%, respectively, inhibited hyperfiltration. We conclude that the same hemodynamic changes that occur in normal animals given a high-protein diet also take place when glomeruli are uniformly damaged by a disease process as in ADR nephrosis. However, whereas hyperfiltration in normal animals appears to be independent of renal PGs, in nephrotic animals an enhanced renal synthesis of PGI2 appeals to play a crucial role in the adaptive changes responsible for hyperfiltration.
articolo
1986
Benigni, Ariela; Zoja, Carla; Remuzzi, Andrea; Orisio, Silvia; Piccinelli, Antonella; Remuzzi, Giuseppe
(1986). Role of renal prostaglandins in normal and nephrotic rats with diet-induced hyperfiltration [journal article - articolo]. In JOURNAL OF LABORATORY AND CLINICAL MEDICINE. Retrieved from http://hdl.handle.net/10446/204463
File allegato/i alla scheda:
File Dimensione del file Formato  
007 1986 Benigni A(J Lab Clin Med).pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 965.85 kB
Formato Adobe PDF
965.85 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/204463
Citazioni
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 37
social impact