This paper analyzes discrete time portfolio selection models with Lévy processes. We first implement portfolio models under the hypotheses the vector of log-returns follow or a multivariate Variance Gamma model or a Multivariate Normal Inverse Gaussian model or a Brownian Motion. In particular, we propose an ex-ante and an ex-post empirical comparisons by the point of view of different investors. Thus, we compare portfolio strategies considering different term structure scenarios and different distributional assumptions when unlimited short sales are allowed.

(2007). Discrete Time Portfolio Selection with Lévy Processes [book chapter - capitolo di libro]. Retrieved from http://hdl.handle.net/10446/20937

Discrete Time Portfolio Selection with Lévy Processes

BERTINI, Cesarino;ORTOBELLI LOZZA, Sergio;STAINO, Alessandro
2007-01-01

Abstract

This paper analyzes discrete time portfolio selection models with Lévy processes. We first implement portfolio models under the hypotheses the vector of log-returns follow or a multivariate Variance Gamma model or a Multivariate Normal Inverse Gaussian model or a Brownian Motion. In particular, we propose an ex-ante and an ex-post empirical comparisons by the point of view of different investors. Thus, we compare portfolio strategies considering different term structure scenarios and different distributional assumptions when unlimited short sales are allowed.
2007
Bertini, Cesarino; ORTOBELLI LOZZA, Sergio; Staino, Alessandro
File allegato/i alla scheda:
File Dimensione del file Formato  
Discrete Time Portfolio Selection with Lévy Processes.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 212.89 kB
Formato Adobe PDF
212.89 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/20937
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact