We consider multi-valued variational inequalities defined on a Cartesian product of finite-dimensional subspaces. We introduce extensions of order monotonicity concepts for set-valued mappings, which are adjusted to the case where the subspaces need not be real lines. These concepts enable us to establish new existence and uniqueness results for the corresponding partitionable multi-valued variational inequalities. Following a parametric coercivity approach, we obtain convergence of the Tikhonov regularization method without monotonicity conditions.

(2007). Partitionable Variational Inequalities with Multi-valued Mappings [conference presentation - intervento a convegno]. Retrieved from http://hdl.handle.net/10446/21093

Partitionable Variational Inequalities with Multi-valued Mappings

GNUDI, Adriana;
2007-01-01

Abstract

We consider multi-valued variational inequalities defined on a Cartesian product of finite-dimensional subspaces. We introduce extensions of order monotonicity concepts for set-valued mappings, which are adjusted to the case where the subspaces need not be real lines. These concepts enable us to establish new existence and uniqueness results for the corresponding partitionable multi-valued variational inequalities. Following a parametric coercivity approach, we obtain convergence of the Tikhonov regularization method without monotonicity conditions.
conference presentation - intervento a convegno
2007
Allevi, Elisabetta; Gnudi, Adriana; Konnov, Igor V.
File allegato/i alla scheda:
Non ci sono file allegati a questa scheda.
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/21093
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact