In this work microstructure, porosity and hydration degree of cement-based solidified/stabilized wasteforms were studied before assessing their leaching behaviour. 2-Chloroaniline was chosen as a model liquid organic pollutant and included into cement pastes, whichwere also modified with different admixtures for concrete: a superplasticizer based on acrylic-modified polymer, a synthetic rubber latex and a waterproofing agent. An organoclay, modified with an ammonium quaternary salt (benzyl-dimethyltallowammonium, BDMTA), was added to the pastes as pre-sorbent agent of the organic matter. All the samples were dried up to constant weight in order to stop the hydration process at different times during the first 28 days of curing, typically, after 1 day (1 d), 7 days (7 d) and 28 days. Then, the microstructure of the hardened cementâ??clay pastes was investigated by powder X-ray diffraction (XRD). The hydration degree and porosity were studied by thermal analysis (TG/DTA) and mercury intrusion porosimetry (MIP), respectively. For samples cured for 28 days a short-term leach test set by Italian regulation for industrial waste recycling (D.M. 5 February 1998) was performed. The best results showed a 5% release of the total initial amount of organic pollutant.

Use of admixtures in organic contaminated cement-clay pastes

NATALI SORA, Isabella;PELOSATO, Renato
2009-01-01

Abstract

In this work microstructure, porosity and hydration degree of cement-based solidified/stabilized wasteforms were studied before assessing their leaching behaviour. 2-Chloroaniline was chosen as a model liquid organic pollutant and included into cement pastes, whichwere also modified with different admixtures for concrete: a superplasticizer based on acrylic-modified polymer, a synthetic rubber latex and a waterproofing agent. An organoclay, modified with an ammonium quaternary salt (benzyl-dimethyltallowammonium, BDMTA), was added to the pastes as pre-sorbent agent of the organic matter. All the samples were dried up to constant weight in order to stop the hydration process at different times during the first 28 days of curing, typically, after 1 day (1 d), 7 days (7 d) and 28 days. Then, the microstructure of the hardened cementâ??clay pastes was investigated by powder X-ray diffraction (XRD). The hydration degree and porosity were studied by thermal analysis (TG/DTA) and mercury intrusion porosimetry (MIP), respectively. For samples cured for 28 days a short-term leach test set by Italian regulation for industrial waste recycling (D.M. 5 February 1998) was performed. The best results showed a 5% release of the total initial amount of organic pollutant.
journal article - articolo
2009
GALLO STAMPINO, Paola; Zampori, Luca; Dotelli, Giovanni; Meloni, Paola; NATALI SORA, Isabella; Pelosato, Renato
File allegato/i alla scheda:
Non ci sono file allegati a questa scheda.
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/22141
Citazioni
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact