This paper introduces a novel magnetic coupling (MC) topology, which is able to achieve significant torque density values by adding a limited amount of extra permanent magnets (PMs). Indeed, the proposed MC architecture, namely enhanced magnetic coupling (EMC), includes both axial and radial concepts in the same structure. In particular, one radial and two axial MCs are considered and embedded in a single device. Hence, this configuration allows to boost the transmitted torque that is sum of three contributions, while keeping almost unaltered the overall device's volume. The geometry of the EMC is discussed and a 2D subdomain analysis is employed for its preliminary study and fast performance evaluation. The results obtained by the 2D subdomain approach are then compared and validated against 3D finite element method (FEM).

(2020). A Novel Magnetic Coupling Configuration for Enhancing the Torque Density . Retrieved from http://hdl.handle.net/10446/224352

A Novel Magnetic Coupling Configuration for Enhancing the Torque Density

Giangrande, Paolo;
2020-01-01

Abstract

This paper introduces a novel magnetic coupling (MC) topology, which is able to achieve significant torque density values by adding a limited amount of extra permanent magnets (PMs). Indeed, the proposed MC architecture, namely enhanced magnetic coupling (EMC), includes both axial and radial concepts in the same structure. In particular, one radial and two axial MCs are considered and embedded in a single device. Hence, this configuration allows to boost the transmitted torque that is sum of three contributions, while keeping almost unaltered the overall device's volume. The geometry of the EMC is discussed and a 2D subdomain analysis is employed for its preliminary study and fast performance evaluation. The results obtained by the 2D subdomain approach are then compared and validated against 3D finite element method (FEM).
2020
Akcay, Yusuf; Giangrande, Paolo; Galea, Michael
File allegato/i alla scheda:
File Dimensione del file Formato  
Published Version.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/224352
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact