High performance and reliable electrical machines are often required in modern applications and an appropriate thermal management allows to fulfil such demand. Thermal management is crucial for improving performance, reducing size and preserving the insulation lifetime of electrical machines. From this prospective, a novel cooling method for machine end-windings is proposed in the present work. Its cooling action focuses on the end-windings, since they are commonly identified as the machine hot-spot. The effectiveness of the proposed cooling method is experimentally proved and the improvement, in terms of current density, for a given wire insulation thermal class, is quantified. A previously designed permanent magnet synchronous machine, implementing a traditional housing water jacket, is used as a case study. The influence of the improved current density on machine torque density is investigated, through finite element simulations, when the proposed cooling method is integrated to the existing housing water jacket.

(2018). On the Effects of Advanced End-Winding Cooling on the Design and Performance of Electrical Machines . Retrieved from http://hdl.handle.net/10446/224376

On the Effects of Advanced End-Winding Cooling on the Design and Performance of Electrical Machines

Giangrande, Paolo;
2018-01-01

Abstract

High performance and reliable electrical machines are often required in modern applications and an appropriate thermal management allows to fulfil such demand. Thermal management is crucial for improving performance, reducing size and preserving the insulation lifetime of electrical machines. From this prospective, a novel cooling method for machine end-windings is proposed in the present work. Its cooling action focuses on the end-windings, since they are commonly identified as the machine hot-spot. The effectiveness of the proposed cooling method is experimentally proved and the improvement, in terms of current density, for a given wire insulation thermal class, is quantified. A previously designed permanent magnet synchronous machine, implementing a traditional housing water jacket, is used as a case study. The influence of the improved current density on machine torque density is investigated, through finite element simulations, when the proposed cooling method is integrated to the existing housing water jacket.
2018
Madonna, Vincenzo; Giangrande, Paolo; Walker, Adam; Galea, Michael
File allegato/i alla scheda:
File Dimensione del file Formato  
Published Version.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 762.75 kB
Formato Adobe PDF
762.75 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/224376
Citazioni
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 36
social impact