The sensorless position control of permanent magnet motors is successfully implemented superimposing an high-frequency voltage signal on the voltage reference or adding a high-frequency current signal to the current reference. The former approach is usually preferred because of its simplicity although the latter one may allow better performance. This paper presents a new algorithm for sensorless control of low-saliency permanent magnet synchronous motors based on high-frequency sinusoidal current signal injection into the d-axis. Differently from the related literature, the position information is derived by analyzing the measured high-frequency currents. The amplitude of the d-axis voltage reference is also exploited to improve performance. A proportional integral controller plus resonant term is adopted to ensure accurate tracking of both the dc and high-frequency components of the d-axis current reference. The main advantages of the proposed approach are the increased accuracy and sensitivity with respect to the approach based on voltage injection, the insensitiveness to inverter non-linearities that are compensated by the current regulation loop, the actual control on the injected current value, and practical absence of acoustic noise. Experiments on a linear tubular permanent magnet synchronous motor prototype have been carried out to verify the above mentioned advantages. The paper also presents a discussion of the parameters of proportional integral controller plus resonant term. © 2009 IEEE.

(2009). Sensorless position control of permanent magnet motors with pulsating current injection considering end-effect . Retrieved from http://hdl.handle.net/10446/224446

Sensorless position control of permanent magnet motors with pulsating current injection considering end-effect

Giangrande, P.;
2009-01-01

Abstract

The sensorless position control of permanent magnet motors is successfully implemented superimposing an high-frequency voltage signal on the voltage reference or adding a high-frequency current signal to the current reference. The former approach is usually preferred because of its simplicity although the latter one may allow better performance. This paper presents a new algorithm for sensorless control of low-saliency permanent magnet synchronous motors based on high-frequency sinusoidal current signal injection into the d-axis. Differently from the related literature, the position information is derived by analyzing the measured high-frequency currents. The amplitude of the d-axis voltage reference is also exploited to improve performance. A proportional integral controller plus resonant term is adopted to ensure accurate tracking of both the dc and high-frequency components of the d-axis current reference. The main advantages of the proposed approach are the increased accuracy and sensitivity with respect to the approach based on voltage injection, the insensitiveness to inverter non-linearities that are compensated by the current regulation loop, the actual control on the injected current value, and practical absence of acoustic noise. Experiments on a linear tubular permanent magnet synchronous motor prototype have been carried out to verify the above mentioned advantages. The paper also presents a discussion of the parameters of proportional integral controller plus resonant term. © 2009 IEEE.
2009
Cupertino, F.; Giangrande, Paolo; Salvatore, L.; Pellegrino, G.
File allegato/i alla scheda:
File Dimensione del file Formato  
Published Version.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 569.35 kB
Formato Adobe PDF
569.35 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/224446
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact