Magnetic couplings (MCs) enable contactless speed/torque transmission via interactions between the magnetic fields of permanent magnets (PMs) rather than a physical mechanical connection. The contactless transmission of mechanical power leads to improvements in terms of efficiency and reliability due to the absence of wear between moving parts. One of the most common MC topologies is the coaxial type, also known as the radial configuration. This paper presents an analytical tool for the accurate and fast analysis of coaxial magnetic couplings (CMCs) using a twodimensional subdomain approach. In particular, the proposed analytical tool resolves Laplace’s and Poisson’s equations for both air-gap and PM regions. The tool can be used to evaluate the impact of several design parameters on the performance of the CMC, enabling quick and accurate sensitivity analyses, which in turn guide the choice of design parameters. After discussing the building procedure of the analytical tool, its applicability and suitability for sensitivity analyses are assessed and proven with the analysis of a fully parameterized CMC geometry. The accuracy and the computational burden of the proposed analytical tool are compared against those of the finite element method (FEM), revealing faster solving times and acceptable levels of precision.
(2021). Fast and accurate 2d analytical subdomain method for coaxial magnetic coupling analysis [journal article - articolo]. In ENERGIES. Retrieved from http://hdl.handle.net/10446/224490
Fast and accurate 2d analytical subdomain method for coaxial magnetic coupling analysis
Giangrande, Paolo;
2021-01-01
Abstract
Magnetic couplings (MCs) enable contactless speed/torque transmission via interactions between the magnetic fields of permanent magnets (PMs) rather than a physical mechanical connection. The contactless transmission of mechanical power leads to improvements in terms of efficiency and reliability due to the absence of wear between moving parts. One of the most common MC topologies is the coaxial type, also known as the radial configuration. This paper presents an analytical tool for the accurate and fast analysis of coaxial magnetic couplings (CMCs) using a twodimensional subdomain approach. In particular, the proposed analytical tool resolves Laplace’s and Poisson’s equations for both air-gap and PM regions. The tool can be used to evaluate the impact of several design parameters on the performance of the CMC, enabling quick and accurate sensitivity analyses, which in turn guide the choice of design parameters. After discussing the building procedure of the analytical tool, its applicability and suitability for sensitivity analyses are assessed and proven with the analysis of a fully parameterized CMC geometry. The accuracy and the computational burden of the proposed analytical tool are compared against those of the finite element method (FEM), revealing faster solving times and acceptable levels of precision.File | Dimensione del file | Formato | |
---|---|---|---|
Published Version.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
5.11 MB
Formato
Adobe PDF
|
5.11 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo