The sensorless position control of permanent-magnet motors is successfully implemented by superimposing a high-frequency voltage signal on the voltage reference or adding a high-frequency current signal to the current reference. The former approach is usually preferred because of its simplicity, although the latter one may allow better performance. This paper presents a new algorithm for the sensorless control of low-saliency permanent-magnet synchronous motors based on high-frequency sinusoidal current signal injection into the d-axis. Different from the related literature, the position information is derived by analyzing the measured high-frequency currents. The amplitude of the d-axis voltage reference is also exploited to improve performance. A proportionalintegral (PI) controller plus a resonant term (PI-RES) is adopted to ensure the accurate tracking of both the dc and high-frequency components of the d-axis current reference. The main advantages of the proposed approach are the increased accuracy and sensitivity with respect to the approach based on voltage injection, the insensitiveness to inverter nonlinearities that are compensated by the current regulation loop, the actual control on the injected current value, and the practical absence of acoustic noise. Experiments on a linear tubular permanent-magnet synchronous motor prototype have been carried out to verify the aforementioned advantages. This paper also presents a discussion of the parameters of the PI-RES. © 2011 IEEE.

(2011). Sensorless position control of permanent-magnet motors with pulsating current injection and compensation of motor end effects [journal article - articolo]. In IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. Retrieved from http://hdl.handle.net/10446/224500

Sensorless position control of permanent-magnet motors with pulsating current injection and compensation of motor end effects

Giangrande, Paolo;
2011-01-01

Abstract

The sensorless position control of permanent-magnet motors is successfully implemented by superimposing a high-frequency voltage signal on the voltage reference or adding a high-frequency current signal to the current reference. The former approach is usually preferred because of its simplicity, although the latter one may allow better performance. This paper presents a new algorithm for the sensorless control of low-saliency permanent-magnet synchronous motors based on high-frequency sinusoidal current signal injection into the d-axis. Different from the related literature, the position information is derived by analyzing the measured high-frequency currents. The amplitude of the d-axis voltage reference is also exploited to improve performance. A proportionalintegral (PI) controller plus a resonant term (PI-RES) is adopted to ensure the accurate tracking of both the dc and high-frequency components of the d-axis current reference. The main advantages of the proposed approach are the increased accuracy and sensitivity with respect to the approach based on voltage injection, the insensitiveness to inverter nonlinearities that are compensated by the current regulation loop, the actual control on the injected current value, and the practical absence of acoustic noise. Experiments on a linear tubular permanent-magnet synchronous motor prototype have been carried out to verify the aforementioned advantages. This paper also presents a discussion of the parameters of the PI-RES. © 2011 IEEE.
articolo
2011
Cupertino, Francesco; Pellegrino, Gianmario; Giangrande, Paolo; Salvatore, Luigi
(2011). Sensorless position control of permanent-magnet motors with pulsating current injection and compensation of motor end effects [journal article - articolo]. In IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. Retrieved from http://hdl.handle.net/10446/224500
File allegato/i alla scheda:
File Dimensione del file Formato  
Published Version.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 841.73 kB
Formato Adobe PDF
841.73 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/224500
Citazioni
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 53
social impact