Electric drives are an essential part of more electric aircraft (MEA) applications with ever-growing demands for high power density, high performance, and high fault-tolerant capability. High-speed motor drives can fulfill those needs, but their speeds are subject to the relatively low dc-link voltage adopted by MEA. The power inverters are thus expected to efficiently and effectively manage that limited voltage. A recently popular topology is represented by the dual inverters. They are featured by inherited fault tolerance, a high dc-link voltage utilization, and an excellent output power profile. This article aims to present a comprehensive review of different structures based on the dual inverter. To meet the stringent requirements of MEA applications, three performance aspects, including the voltage utilization, the inverter output quality, and the fault-tolerant capability, are selected. Based on the chosen performance metrics, the key features of adopting dual inverter topologies against other converter selections are explicitly demonstrated. Finally, a practical guideline for choosing suitable dual inverters for different MEA applications is provided.
(2022). Technical Review of Dual Inverter Topologies for More Electric Aircraft Applications [journal article - articolo]. In IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION. Retrieved from http://hdl.handle.net/10446/224512
Technical Review of Dual Inverter Topologies for More Electric Aircraft Applications
Giangrande, Paolo;
2022-01-01
Abstract
Electric drives are an essential part of more electric aircraft (MEA) applications with ever-growing demands for high power density, high performance, and high fault-tolerant capability. High-speed motor drives can fulfill those needs, but their speeds are subject to the relatively low dc-link voltage adopted by MEA. The power inverters are thus expected to efficiently and effectively manage that limited voltage. A recently popular topology is represented by the dual inverters. They are featured by inherited fault tolerance, a high dc-link voltage utilization, and an excellent output power profile. This article aims to present a comprehensive review of different structures based on the dual inverter. To meet the stringent requirements of MEA applications, three performance aspects, including the voltage utilization, the inverter output quality, and the fault-tolerant capability, are selected. Based on the chosen performance metrics, the key features of adopting dual inverter topologies against other converter selections are explicitly demonstrated. Finally, a practical guideline for choosing suitable dual inverters for different MEA applications is provided.File | Dimensione del file | Formato | |
---|---|---|---|
Published Version.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
5.3 MB
Formato
Adobe PDF
|
5.3 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo