The B-c(+) meson is observed for the first time in heavy ion collisions. Data from the CMS detector are used to study the production of the B-c(+) meson in lead-lead (Pb-Pb) and proton-proton (pp) collisions at a center of-mass energy per nucleon pair of root s(NN) = 5.02 TeV, via the B-c(+) -> (J/psi -> mu(+)mu(-))mu(+)nu(mu) decay. The B-c(+) nuclear modification factor, derived from the Pb-Pb-to-pp ratio of production cross sections, is measured in two bins of the trimuon transverse momentum and of the Pb-Pb collision centrality. The B-c(+) meson is shown to be less suppressed than quarkonia and most of the open heavy-flavor mesons, suggesting that effects of the hot and dense nuclear matter created in heavy ion collisions contribute to its production. This measurement sets forth a promising new probe of the interplay of suppression and enhancement mechanisms in the production of heavy-flavor mesons in the quark-gluon plasma.

(2022). Observation of the B+c Meson in Pb-Pb and pp Collisions at √sNN=5.02  TeV and Measurement of its Nuclear Modification Factor [journal article - articolo]. In PHYSICAL REVIEW LETTERS. Retrieved from http://hdl.handle.net/10446/227132

Observation of the B+c Meson in Pb-Pb and pp Collisions at √sNN=5.02  TeV and Measurement of its Nuclear Modification Factor

Re, V;Vai, I;