We consider an Rd dimensional homogeneous diffusion process with a unique invariant density f. We construct a kernel type estimator for the invariant density and study its mean-square convergence. We find that this estimator reaches in a specific minimax sense a rate that is slower than parametric but faster than in classical d-dimensional estimation problems. Finally we examine the almost sure (pointwise and uniform) behavior of the estimator and we give examples. © 2007 Springer.

(2007). Invariant density estimation for multidimensional diffusions . Retrieved from http://hdl.handle.net/10446/227571

Invariant density estimation for multidimensional diffusions

Bianchi, Annamaria
2007-01-01

Abstract

We consider an Rd dimensional homogeneous diffusion process with a unique invariant density f. We construct a kernel type estimator for the invariant density and study its mean-square convergence. We find that this estimator reaches in a specific minimax sense a rate that is slower than parametric but faster than in classical d-dimensional estimation problems. Finally we examine the almost sure (pointwise and uniform) behavior of the estimator and we give examples. © 2007 Springer.
2007
Bianchi, Annamaria
File allegato/i alla scheda:
File Dimensione del file Formato  
978-3-540-44446-6_4.pdf

Solo gestori di archivio

Descrizione: Estratto parziale
Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 260.65 kB
Formato Adobe PDF
260.65 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/227571
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact