We consider an Rd dimensional homogeneous diffusion process with a unique invariant density f. We construct a kernel type estimator for the invariant density and study its mean-square convergence. We find that this estimator reaches in a specific minimax sense a rate that is slower than parametric but faster than in classical d-dimensional estimation problems. Finally we examine the almost sure (pointwise and uniform) behavior of the estimator and we give examples. © 2007 Springer.
(2007). Invariant density estimation for multidimensional diffusions . Retrieved from http://hdl.handle.net/10446/227571
Invariant density estimation for multidimensional diffusions
Bianchi, Annamaria
2007-01-01
Abstract
We consider an Rd dimensional homogeneous diffusion process with a unique invariant density f. We construct a kernel type estimator for the invariant density and study its mean-square convergence. We find that this estimator reaches in a specific minimax sense a rate that is slower than parametric but faster than in classical d-dimensional estimation problems. Finally we examine the almost sure (pointwise and uniform) behavior of the estimator and we give examples. © 2007 Springer.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
978-3-540-44446-6_4.pdf
Solo gestori di archivio
Descrizione: Estratto parziale
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
260.65 kB
Formato
Adobe PDF
|
260.65 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo