In the anti-seismic design there is a tendency to realize resilient constructions able to take progressively greater damage as the seismic intensity increases, preserving in any case a reasonable distance from structural collapse. For this to be possible it is necessary that the structures are able to maintain a stable behaviour in the inelastic field. One method of achieving resilient buildings is the use of re-centring systems obtained by inserting unbounded post-tensioned cables within the lateral force resisting system structural elements. These systems are known as rocking systems and can be coupled with hysteretic and/or viscous devices to increase energy dissipation. These structural types are very advantageous because they are characterized by a low level of damage and high post-earthquake operability. The objective of the research is to develop design strategies and analysis methods for re-centring systems. The study is focused on the definition of design criteria for dissipators and post-tensioned cables of hybrid systems and on the study of the modelling of such systems in order to further promote their use. The seismic design is conducted by exploiting the displacement-based design procedure proposed by Priestley. This approach has been extended to the design of multi-rocking systems and in the case of viscous dampers as an alternative to hysteretic devices. At the modelling level, various solutions have been investigated and compared with the results obtained from experimental tests: specifically from the DSDM research project carried out in 2008 at the University of California at San Diego concerning the shake table tests of a three-story 1:2 scale precast building with rocking and hybrid walls and from the research project of a re-centring bridge pier tested at the laboratory of the University of California at Berkeley and object of the 2017 PEER Blind Prediction Contest. The influence of horizontal and vertical accelerations spikes originating from gap opening and closing at the wall-foundation interface was also analysed, as well as the local and global responses of the individual wall and of the entire structure under study, respectively. The results allowed to define the optimal parameters to be used during the modelling of such systems. Specifically, the insertion of a dissipative element at the base has made it possible to eliminate part of the disturbances on the horizontal accelerations found during the opening and closing phases of the gap at the base and to mitigate the effect of high frequency vibrations due to impacts. Three different types of modelling strategies were developed: with fiber elements, with lumped rotational springs at the base and with distribute compression-only translational springs at the wall-foundation interface. Each modelling strategy was performed on both simplified and more complex models.
Nella progettazione antisismica si tende a realizzare costruzioni resilienti in grado di incassare danni progressivamente più consistenti al crescere dell’intensità sismica, conservando in ogni caso una ragionevole distanza dal collasso strutturale. Perché ciò sia possibile è necessario che le strutture siano in grado di mantenere un comportamento stabile in campo inelastico. Un metodo per ottenere edifici resilienti è l’utilizzo di sistemi ricentranti ottenuti con l’inserimento di cavi post-tesi non aderenti all’interno di elementi strutturali. Tali sistemi sono noti con il termine di rocking systems e possono essere affiancati a dispositivi isteretici e/o viscosi per aumentare la dissipazione energetica. Queste tipologie strutturali sono molto vantaggiose perché caratterizzate da un basso livello di danno e da un’elevata operatività post-sisma. L’obiettivo della ricerca è lo sviluppo di metodi di progettazione e analisi per sistemi ricentranti con l’obiettivo di rendere il patrimonio edilizio più sostenibile, sicuro e resiliente. Lo studio si focalizza sulla definizione di criteri di progetto per la definizione dei dissipatori e dei cavi post-tesi dei sistemi ibridi e sullo studio della modellazione di tali sistemi al fine di promuoverne maggiormente l’utilizzo. La progettazione sismica è condotta sfruttando il metodo displacement-based design proposto da Priestley. Tale approccio è stato esteso al progetto di sistemi multi-rocking e nel caso di elementi dissipativi di tipo viscoso in alternativa a quelli di tipo isteretico, grazie allo sviluppo di una procedura specifica. A livello di modellazione, sono state sviluppate e confrontate varie soluzioni i cui risultati analitici sono stati validati con quanto ottenuto da test sperimentali: nello specifico dal progetto di ricerca DSDM svoltosi nel 2008 presso l’Università della California a San Diego riguardante i test su tavola vibrante di un edificio prefabbricato di tre piani in scala 1:2 con setti rocking e dal progetto di ricerca riguardante una pila da ponte ricentrante testata presso il laboratorio dell’Università della California a Berkeley e oggetto del 2017 PEER Blind Prediction Contest. È stata inoltre analizzata l’influenza dei picchi di accelerazioni orizzontale e verticale, originati dall’apertura e dalla chiusura del gap all’interfaccia parete-fondazione, oltre che le risposte locali e globali, rispettivamente della singola parete e dell’intera struttura oggetto di studio. I risultati ottenuti a seguito della modellazione, confrontati con quanto ottenuto sperimentalmente, hanno permesso di definire dei parametri ottimali da utilizzare durante la modellazione di tali sistemi. Nello specifico, l’inserimento di un elemento dissipativo alla base ha consentito di eliminare parte dei disturbi sulle accelerazioni orizzontali riscontrati durante le fasi di apertura e chiusura del gap alla base e mitigare l’effetto delle vibrazioni ad alta frequenza dovute agli impatti. Sono state sviluppate tre differenti tipologie di modellazione: con elementi a fibre, con molla rotazionale alla base e con molle traslazionali reagenti solo a compressione nell’interfaccia parete-fondazione. Ciascuna modellazione è stata effettuata sia su modelli semplificati sia su modelli più complessi.
(2022). Sistemi strutturali ricentranti per strutture resilienti al sisma: rocking walls e rocking columns . Retrieved from http://hdl.handle.net/10446/227576 Retrieved from http://dx.doi.org/10.13122/bressanelli-michele-egidio_phd2022-04-05
Sistemi strutturali ricentranti per strutture resilienti al sisma: rocking walls e rocking columns
BRESSANELLI, Michele Egidio
2022-04-05
Abstract
In the anti-seismic design there is a tendency to realize resilient constructions able to take progressively greater damage as the seismic intensity increases, preserving in any case a reasonable distance from structural collapse. For this to be possible it is necessary that the structures are able to maintain a stable behaviour in the inelastic field. One method of achieving resilient buildings is the use of re-centring systems obtained by inserting unbounded post-tensioned cables within the lateral force resisting system structural elements. These systems are known as rocking systems and can be coupled with hysteretic and/or viscous devices to increase energy dissipation. These structural types are very advantageous because they are characterized by a low level of damage and high post-earthquake operability. The objective of the research is to develop design strategies and analysis methods for re-centring systems. The study is focused on the definition of design criteria for dissipators and post-tensioned cables of hybrid systems and on the study of the modelling of such systems in order to further promote their use. The seismic design is conducted by exploiting the displacement-based design procedure proposed by Priestley. This approach has been extended to the design of multi-rocking systems and in the case of viscous dampers as an alternative to hysteretic devices. At the modelling level, various solutions have been investigated and compared with the results obtained from experimental tests: specifically from the DSDM research project carried out in 2008 at the University of California at San Diego concerning the shake table tests of a three-story 1:2 scale precast building with rocking and hybrid walls and from the research project of a re-centring bridge pier tested at the laboratory of the University of California at Berkeley and object of the 2017 PEER Blind Prediction Contest. The influence of horizontal and vertical accelerations spikes originating from gap opening and closing at the wall-foundation interface was also analysed, as well as the local and global responses of the individual wall and of the entire structure under study, respectively. The results allowed to define the optimal parameters to be used during the modelling of such systems. Specifically, the insertion of a dissipative element at the base has made it possible to eliminate part of the disturbances on the horizontal accelerations found during the opening and closing phases of the gap at the base and to mitigate the effect of high frequency vibrations due to impacts. Three different types of modelling strategies were developed: with fiber elements, with lumped rotational springs at the base and with distribute compression-only translational springs at the wall-foundation interface. Each modelling strategy was performed on both simplified and more complex models.File | Dimensione del file | Formato | |
---|---|---|---|
THESIS_PhD_MicheleBressanelli_UNIBG.pdf
accesso aperto
Descrizione: Tesi rivista
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
23.89 MB
Formato
Adobe PDF
|
23.89 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo