We study the problem of computing an equilibrium in leader-follower games with a single leader and multiple followers where, after the leader’s commitment to a mixed strategy, the followers play simultaneously in a noncooperative way, reaching a Nash equilibrium. We tackle the problem from a bilevel programming perspective. Since, given the leader’s strategy, the followers’ subgame may admit multiple Nash equilibria, we consider the cases where the followers play either the best (optimistic) or the worst (pessimistic) Nash equilibrium in terms of the leader’s utility. For the optimistic case, we propose three formulations which cast the problem into a single level mixed- integer nonconvex program. For the pessimistic case, which, as we show, may admit a supremum but not a maximum, we develop an ad hoc branch-and-bound algorithm. Computational results are reported and illustrated.
(2017). Bilevel programming approaches to the computation of optimistic and pessimistic single-leader-multi-follower equilibria . Retrieved from http://hdl.handle.net/10446/229355
Bilevel programming approaches to the computation of optimistic and pessimistic single-leader-multi-follower equilibria
Coniglio, Stefano;Gatti, Nicola;
2017-01-01
Abstract
We study the problem of computing an equilibrium in leader-follower games with a single leader and multiple followers where, after the leader’s commitment to a mixed strategy, the followers play simultaneously in a noncooperative way, reaching a Nash equilibrium. We tackle the problem from a bilevel programming perspective. Since, given the leader’s strategy, the followers’ subgame may admit multiple Nash equilibria, we consider the cases where the followers play either the best (optimistic) or the worst (pessimistic) Nash equilibrium in terms of the leader’s utility. For the optimistic case, we propose three formulations which cast the problem into a single level mixed- integer nonconvex program. For the pessimistic case, which, as we show, may admit a supremum but not a maximum, we develop an ad hoc branch-and-bound algorithm. Computational results are reported and illustrated.File | Dimensione del file | Formato | |
---|---|---|---|
2017-SEA-LFPNE.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
530.46 kB
Formato
Adobe PDF
|
530.46 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo