We consider a Frobenius structure associated with the dispersionless Kadomtsev - Petviashvili equation. This is done, essentially, by applying a continuous analogue of the finite dimensional theory in the space of Schwartz functions on the line. The potential of the Frobenius manifold is found to be a logarithmic energy with quadratic external field. Following the construction of the principal hierarchy, we construct a set of infinitely many commuting flows, which extends the classical dKP hierarchy. © 2012 Springer-Verlag.
(2012). Frobenius Manifold for the Dispersionless Kadomtsev-Petviashvili Equation [journal article - articolo]. In COMMUNICATIONS IN MATHEMATICAL PHYSICS. Retrieved from http://hdl.handle.net/10446/230890
Frobenius Manifold for the Dispersionless Kadomtsev-Petviashvili Equation
Raimondo, Andrea
2012-01-01
Abstract
We consider a Frobenius structure associated with the dispersionless Kadomtsev - Petviashvili equation. This is done, essentially, by applying a continuous analogue of the finite dimensional theory in the space of Schwartz functions on the line. The potential of the Frobenius manifold is found to be a logarithmic energy with quadratic external field. Following the construction of the principal hierarchy, we construct a set of infinitely many commuting flows, which extends the classical dKP hierarchy. © 2012 Springer-Verlag.File | Dimensione del file | Formato | |
---|---|---|---|
1008.2128.pdf
Open Access dal 23/03/2013
Descrizione: This is a post-peer-review, pre-copyedit version of an article published in Communications in Mathematical Physics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00220-012-1470-7
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Creative commons
Dimensione del file
354.64 kB
Formato
Adobe PDF
|
354.64 kB | Adobe PDF | Visualizza/Apri |
s00220-012-1470-7.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
410.53 kB
Formato
Adobe PDF
|
410.53 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo